国产精品亚洲动漫一二区_亚洲国产日韩成人在线观看_中文字字幕在线中文人妖_人妻侵犯久久久影院_成人91无码18禁午夜福利_日本熟女性爱中文字幕视频_亚洲精品黄色在线观看视频_九一免费下载亚洲无码电影_亚洲日韩少妇熟女一二三四区_毛片免费视频播放

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購(gòu)物車 1 種商品 - 共0元
當(dāng)前位置: 首頁(yè) > 行業(yè)資訊 > Could coffee be the secret to fighting obesity?

Could coffee be the secret to fighting obesity?

 

Date:

June 24, 2019

Source:

University of Nottingham

Summary:

Scientists have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

Scientists from the University of Nottingham have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

 

The pioneering study, published today in the journal Scientific Reports, is one of the first to be carried out in humans to find components which could have a direct effect on 'brown fat' functions, an important part of the human body which plays a key role in how quickly we can burn calories as energy.

 

Brown adipose tissue (BAT), also known as brown fat, is one of two types of fat found in humans and other mammals. Initially only attributed to babies and hibernating mammals, it was discovered in recent years that adults can have brown fat too. Its main function is to generate body heat by burning calories (opposed to white fat, which is a result of storing excess calories).

 

People with a lower body mass index (BMI) therefore have a higher amount of brown fat.

 

Professor Michael Symonds, from the School of Medicine at the University of Nottingham who co-directed the study said: "Brown fat works in a different way to other fat in your body and produces heat by burning sugar and fat, often in response to cold. Increasing its activity improves blood sugar control as well as improving blood lipid levels and the extra calories burnt help with weight loss. However, until now, no one has found an acceptable way to stimulate its activity in humans.

 

"This is the first study in humans to show that something like a cup of coffee can have a direct effect on our brown fat functions. The potential implications of our results are pretty big, as obesity is a major health concern for society and we also have a growing diabetes epidemic and brown fat could potentially be part of the solution in tackling them."

 

The team started with a series of stem cell studies to see if caffeine would stimulate brown fat. Once they had found the right dose, they then moved on to humans to see if the results were similar.

 

The team used a thermal imaging technique, which they'd previously pioneered, to trace the body's brown fat reserves. The non-invasive technique helps the team to locate brown fat and assess its capacity to produce heat.

 

"From our previous work, we knew that brown fat is mainly located in the neck region, so we were able to image someone straight after they had a drink to see if the brown fat got hotter," said Professor Symonds.

 

"The results were positive and we now need to ascertain that caffeine as one of the ingredients in the coffee is acting as the stimulus or if there's another component helping with the activation of brown fat. We are currently looking at caffeine supplements to test whether the effect is similar.

 

Once we have confirmed which component is responsible for this, it could potentially be used as part of a weight management regime or as part of glucose regulation programme to help prevent diabetes."

 

Story Source:

 

Materials provided by University of Nottingham. Note: Content may be edited for style and length.

 

Journal Reference:

 

Ksenija Velickovic, Declan Wayne, Hilda Anaid Lugo Leija, Ian Bloor, David E. Morris, James Law, Helen Budge, Harold Sacks, Michael E. Symonds, Virginie Sottile. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Scientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45540-1

 

 

 

Mitochondrial Homeostasis and Cellular Senescence

Panagiotis V.S. Vasileiou 1, Konstantinos Evangelou 1, Konstantinos Vlasis 2, Georgios Fildisis 3, Mihalis I. Panayiotidis 4OrcID, Efstathios Chronopoulos 5, Panagiotis-Georgios Passias 1, Mirsini Kouloukoussa 1, Vassilis G. Gorgoulis 1,6,7,8 and Sophia Havaki 1,*

1

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

2

Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

3

Nursing School, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str., 11527 Athens, Greece

4

Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST Newcastle, UK

5

Second Department of Orthopaedics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

6

Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK

7

Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527 Athens, Greece

8

Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

*

Author to whom correspondence should be addressed.

Received: 15 June 2019 / Accepted: 5 July 2019 / Published: 6 July 2019

Abstract: Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.

Keywords: cellular senescence; mitochondria; mitostasis; mitochondrial dynamics

1. Introduction

Cellular senescence is part of a range of cell responses towards extrinsic and/or intrinsic noxious insults that challenge homeostasis, mainly genome and proteome integrity (Figure 1) [1]. The senescent cell is a stressed or damaged, yet viable, cell that has entered a non-proliferative state while still remaining metabolically active. Historically, the first condition described leading to senescence was exhaustion of replication potential due to serial passaging leading to telomere attrition [2]. Below a critical length of telomere, a deoxyribonucleic acid (DNA) damage response is triggered imposing a type of senescence termed replicative senescence (RS). Except for telomere attrition, a wide range of other telomere-independent stimuli, such as oxidative stress, activated oncogenes (termed oncogene induced senescence/OIS), irradiation, genotoxic drugs, cell–cell fusion, epigenetic modifiers, or perturbed proteostasis, have been recognized as powerful inducers of cell senescence. Senescence can also be induced by failure to repair DNA damage [1,3,4]. Senescence imposed by telomere-independent stimuli is more acute and is known as stress induced premature senescence (SIPS) [4,5,6,7,8]. Mechanistically, several molecular pathways have been implicated that often depend on the nature of the initiating event and/or cell type [9,10]. Two best studied molecular axes involve p53/p21WAF1 and Rb-p16INK4A that can also reinforce senescence via a ROS-dependent positive feedback mechanism [5,11,12]. Notably, the p53/p21WAF1 pathway has been suggested to initiate the senescence response, followed by the action of p16INK4A to maintain this condition [13].

Cells 08 00686 g001 550 Figure 1. Maintaining homeostasis is the cornerstone for cells’ normal function, ensuring organismal physiology. Intriguingly, cells are constantly exposed to intrinsic and extrinsic stressors that jeopardize cellular integrity and activate a variety of response modules, through complex and highly sophisticated biochemical networks. Depending on the intensity and duration of the stressor, cellular response mechanisms either manage to neutralize the adverse effects of stress, thus achieving complete recovery and survival, or lead to death in case of non-repairable damage. Between these two opposite outcomes reminiscent of the swinging of a pendulum, cellular senescence enters the scene.

A variety of cellular and molecular hallmarks of senescence have been so far identified, including resistance to apoptosis, morphological and structural features, epigenetic alterations, chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are known for their increased secreting activity [5]. Particularly, they carry out a complex pro-inflammatory response known as senescence-associated secretory phenotype (SASP), which is mediated by the transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of pro-inflammatory factors, such as interleukins, chemokines, growth factors, proteases, cell surface molecules, and extracellular matrix degrading proteins, that influence the surrounding microenvironment. Respectively, the constituents of SASP act in an autocrine and paracrine manner contributing in various developmental programs or pathophysiological conditions [4,5,6,9,15,16]. Closely related with SASP, senescent cells also exhibit apparent alterations of cellular metabolism, corresponding to abnormalities in morphology, mass, and functionality of their organelles [17].

At this point, and by virtue of their central bioenergetic role and their involvement in other physiological processes such as redox signaling, mitochondria enter the scene as potential key players during cellular senescence [18,19]. Cumulative data support this notion. Mitochondrial oxidative phosphorylation (OXPHOS) deterioration has been reported to be primarily involved in the early stages of cellular senescence, using diverse cellular senescence models [20,21,22,23,24,25]. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mainly attributed to dysfunctional mitochondria [26]. Indeed, in already senescent cells, mitochondrial ROS can aggravate cellular senescence by enhancing the DNA damage and the DNA damage response signaling pathway (DDR) [11]. Noteworthy, mitochondrial deoxyribonucleic acid (mtDNA) is highly vulnerable to ROS due to proximity to the generation site, whilst damaged mtDNA in turn, impairs OXPHOS function, thus further enhancing ROS release [17]. Furthermore, senescent cells exert massive metabolic changes related to mitochondrial metabolites [e.g., oxidized to reduced form of nicotinamide adenine dinucleotide ratios (NAD+/NADH) or tricarboxylic acid (TCA) cycle metabolites], and dynamics (namely fusion, fission and mitophagy) [18,19]. Additionally, mitochondrial biogenesis is up-regulated during senescence [11,27]. Notably, despite the increased mitochondrial pool, the overall adenosine triphosphate (ATP) production by oxidative phosphorylation is reduced during senescence [28]. Furthermore, mitochondria of senescent cells show decreased membrane potential, accelerated ROS production and are prone to leakage of mitochondrial enzymes [29,30].

Not only is mitochondrial dysfunction an epiphenomenon of senescence, but also dysfunctional mitochondria can indeed drive the senescent phenotype. Perturbation of mitochondrial homeostasis promotes the establishment and maintenance of cellular senescence through various mechanisms including excessive mitochondrial ROS production, imbalanced mitochondrial dynamics, electron transport chain defect, bioenergetics imbalance and increased 5’ adenosine monophosphate-activated protein kinase (AMPK) activity, altered mitochondrial metabolite profile (e.g., NAD+), and dysregulated mitochondrial calcium homeostasis [31]. These mitochondrial signals trigger p53/p21WAF1 and/or Rb-p16INK4A pathways, ultimately leading to cellular senescence and stabilizing cell-cycle arrest [11,31,32,33,34]. A number of studies indicate that mitochondrial-derived ROS can accelerate telomere shortening, thus causing premature senescence [29], triggering paracrine senescence [35], or inducing and maintaining senescence through sustained DNA damage response [11,29,36]. Strikingly, clearance of mitochondria negatively impacts the development of many senescence-associated features, including the SASP, while maintaining cell-cycle arrest [37]. Recently, the induction of mitochondrial dysfunction was reported to generate a distinct (i.e., mainly in terms of SASP) type of senescence termed mitochondrial dysfunction-associated senescence (MiDAS) [38].

Apparently, a growing body of evidence underscores a bidirectional link between cellular senescence and these multifaceted organelles. This interplay seems to be best described as a vicious circle, involving a number of feedback loops between the players, rather than a linear cause and effect relationship [19]. Notably, the implication of mitochondria in the context of cellular senescence extends far beyond their contribution in ROS production and oxidative stress. In view of recent outstanding findings regarding the role of mitochondria in cellular senescence, herein we sought to present an overview of mitochondrial homeostatic mechanisms along with evidence implicating mitostasis aberrations in cellular senescence or vice versa.

2. Mitostasis: An Overview of the Mitochondrial Genome and Proteome Maintenance Mechanisms

Mitostasis is a term used to encompass all the mechanisms implicated in the maintenance of normal mitochondrial function. It refers both to genome and proteome integrity of mitochondrion.

2.1. Mitochondrial Genome Maintenance Mechanisms

Mammalian mitochondria biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial [39].

Mammalian mtDNA is a small, adenine/thymine-rich, circular molecule consisting of 16,569-base pairs [40]. Its small size confers two benefits: it enhances rapidity and facilitates accuracy of replication [41]. MtDNA contains 37 genes coding for 2 ribosomal nucleic acids, 22 transfer RNAs, and 13 essential protein subunits of the oxidative phosphorylation system. Each organelle contains two to five copies of mtDNA, therefore each cell has thousands (approximately 1000–l0,000) apparently identical copies of mtDNA [42]. Despite its small size and due to its polyploid nature, mtDNA can represent approximately 1% of the total DNA in some cells [43].

The replication of mtDNA is not limited to the S phase, but occurs throughout the cell cycle. Of interest, two modes of mtDNA replication operate in mammalian; the initially described, “orthodox”, strand-asymmetric mechanism [44], and the unidirectional, synchronous leading- and lagging-strand replication cells [45].

A number of surprising features characterizing the mitochondrial genome have come to light, such as dense gene packing, low methylation levels, relaxed codon usage, and a variant genetic code [40,46,47]. In mammalian mtDNA, the addition of a third DNA strand (0.5 kb), termed “7S DNA”, forms the displacement-loop (d-loop), a short triple-stranded, non-coding, regulatory region of mtDNA responsible for transcription and replication initiation by the mitochondria-specific polymerase-γ (pol γ) [48,49]. In addition, d-loop has been implicated in protein recruitment, mtDNA organization and metabolism, as well as dNTP pools maintenance throughout the cell cycle [50,51,52]. Importantly, many but not all molecules of mtDNA bear this third strand of DNA. In fact, the abundance of 7S-DNA varies greatly between species and cell type, being present on 1–65% of mtDNA molecules [53,54]. Strikingly, other molecules contain RNA as the third strand. The RNA of these R-loops is similar in length and location to the d-loop and is complementary to 7S DNA. Of clinical relevance, in cells with a pathological variant of ribonuclease H1 (an enzyme that degrades RNA hybridized to DNA) associated with mitochondrial disease, R-loop numbers are low and there is mitochondrial DNA aggregation, strongly suggesting a role for the R-loop in mtDNA organization and segregation [55].

MtDNA is packaged into protein–DNA complexes called nucleoids [56,57]. The main DNA packaging protein of nucleoids is the mitochondrial transcription factor A (TFAM), a member of the high-mobility group (HMG) of proteins [58,59]. Other factors exerting central role in the maintenance of the mitochondrial genome’s integrity are the nuclear respiratory factors 1 and 2 (NRF 1/2), which are implicated in the transcriptional control of mtDNA, the peroxisome proliferator-activated receptor gamma co-activator one alpha (PGC1α), which stimulates mitochondrial biogenesis in the basis of cellular energy metabolism regulation, as well as sirtuins (SIRT) [60,61,62]. Mitochondrial sirtuins—SIRT3, SIRT4, and SIRT5—are NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their enzymatic activity is indirectly (through NAD+) linked to the metabolic state of the cell. Importantly, they also regulate non-metabolic aspects of mitochondrial biology, thus ensuring that mitochondrial homeostasis is achieved during stress conditions [63].

The main polymerase functioning within mitochondria is polymerase γ (Pol γ), a heterotrimer comprised of one pol γ catalytic subunit (p140), which exerts a DNA polymerase activity, a 3-5 exonuclease activity and a 5-deoxyribose lyase activity, and two accessory subunits (p55). Contrary to the high nucleotide selectivity and exonucleolytic proofreading of the isolated pol γ catalytic subunit, p55 dimeric exerts reduced fidelity of DNA replication by promoting extension of mismatched DNA termini [64]. Importantly, the general notion that pol γ is uniquely responsible for replication and repair of mitochondrial DNA, has been recently challenged, since several polymerases are now proposed to be present within these organelles [65]. For example, it has been demonstrated that Polβ is involved in mtDNA maintenance. At least in some tissues, Polβ interacts with nucleoid proteins such as TWINKLE helicase, mitochondrial single-strand DNA-binding protein 1 (SSBP1 or mtSSB), and TFAM, thus contributing to mtDNA repair machinery [66]. Another example of such a player is PrimPol, a polymerase which also acts as a primase, having roles in both nuclear and mitochondrial DNA maintenance. PrimPol identified in human mitochondria exerts de novo DNA synthesis capability and oxidative lesions tolerance. Moreover, it seems to play additional roles in the repair of damaged DNA in the absence of ongoing replication [67,68]. Nevertheless, the exact role of all polymerases identified within mitochondria is not yet clear [65].

The integrity of mtDNA, which is crucial for mitostasis, is maintained by multiple DNA repair pathways and through the selective degradation of irreparable or heavily damaged DNA. Indeed, stability of the mitochondrial genome is fulfilled through a 3-level defense system, including (a) the architectural organization of mtDNA, (b) DNA repair mechanisms that are activated within mitochondria when mtDNA damage occurs, and (c) the cleavage of damaged mtDNA through mitochondrial dynamic processes [69]. Importantly, our knowledge regarding DNA repair pathways operating within these multifaceted organelles has been expanding during the last decades, from the inceptive belief of no available repair mechanisms, through the subsequent identification of a limited repair repertoire, to the recent and constantly evolving awareness of a sufficient and vigorous “arsenal” against mitochondrial genome damage [70]. Except for the direct reversal (DR) of certain lesions and short-patch base excision repair (BER) [71,72,73], mitochondria also exert long-patch BER activity and translesion synthesis (TLS) capacity for the repair of single-strand breaks, as well as homology recombination (HR), non-homologous (NHEJ) and microhomology-mediated end-joining (MMEJ) activities for the repair of double-strand lesions [67,74,75,76,77,78,79,80]. Additionally, a novel mismatch repair (MMR) pathway, distinctive from the nuclear one, has been shown to be also present within mitochondria [81,82]. However, the level of proficiency of each one of these repair mechanisms, regarding their intra-mitochondrial functionality, has not been fully elucidated and remains to be further studied in order to characterize key players and regulators involved, both in vitro and in vivo. Collectively, with the exception of nucleotide excision repair (NER) and Fanconi anemia (FA) pathways which have not yet been identified within mitochondria, it appears that a broad range of DNA repair mechanisms that operate in the nucleus contribute also to the integrity of the mitochondrial genome. To date, the only hint regarding the NER pathway in the mitochondria is the localization of the transcription-coupled NER proteins CSA and CSB (Cockayne syndrome proteins) to mitochondria upon oxidative stress [83]. Interestingly, recent evidence supports that multiple proteins in the FA pathway are involved in the suppression of inflammasome activation by decreasing mitochondrial ROS production, and are required for mitophagy (clearance of damaged mitochondria) through interaction of FANCC (Fanconi anemia complementation group C) protein with Parkin, thus contributing to mitochondrial and cell homeostasis [84].

2.2. Mitochondrial Proteome Maintenance Mechanisms

A wide range of proteins are involved in the organization, regulation and replication of the mitochondrial genome and the assembly of these multifaceted organelles.

Proteomic studies, driven by large-scale approaches, including in-depth protein mass spectrometry, microscopical, computational and integrative machine learning methods, revealed that mitochondria contain approximately 1000 (in yeast) to 1500 (in humans) different proteins [85,86,87]. From a functional perspective, mitochondrial and mitochondrial-associated proteins are mainly distributed/classified in those involved in energy metabolism (15%), protein synthesis, transport, folding and turnover functions (23%), and genome maintenance and transcription (12%) [88]. Other mitochondrial functions, including structural, signaling and redox processes, transport of metabolites, as well as iron, amino-acid and lipid metabolism, occupy the remaining 30% of the mitochondrial protein armament. Of note, for more than 19% of mitochondrial proteins, no reliable information on their function is available [85,89].

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes [90]. Only 13 (about 1%) from the total number of peptides that compose the mitochondrial proteome are encoded by the mitochondrial DNA and synthesized in the mitochondrial matrix, while the remaining 99% of the mitochondrial proteins are encoded by nuclear genes [85]. Thus, the larger part of the mitochondrial proteins needs to travel in an unfolded state from the cytosol into the mitochondrion [86,91,92]. Trafficking and import of mitochondrial precursor proteins (pre-proteins) is mainly mediated by two mitochondrial translocases, namely the Translocase of the Outer Membrane (TOM) and the Translocase of the Inner Membrane (TIM) complexes [93,94]. Importantly, it has become clear that aberrant routes bypassing the preprotein translocases pathways also exist. In this regard, four principal pathways that direct proteins to their intramitochondrial destination have been so far recognized: the presequence pathway to the matrix and inner membrane, the carrier protein pathway to the inner membrane, the redox-regulated import pathway into the intermembrane space, and the β-barrel pathway into the outer membrane [90].

Proper assembly and quality control of mitochondrial proteins is further monitored and executed by a group of molecular chaperones (also known as “heat shock proteins”) which function in collaboration with a group of proteolytic enzymes (proteases) [94,95,96]. In fact, mitochondria possess their own group of chaperones and proteases stationed in the four compartments of the organelle (i.e., the outer membrane, the intermembrane space, the inner membrane and the matrix) [97,98,99]. These compartment-specific chaperones perform multiple functions important for mitochondria biogenesis and maintenance [100,101]. First, they are essential constituents of the mitochondrial protein import machinery, thus enabling transmembrane trafficking of these macromolecules [102]. Second, molecular chaperones are responsible for proper folding of nascent polypeptides and have a role in intra-mitochondrial protein synthesis [95,103,104]. Third, they protect mitochondrial proteins against denaturation and are actively involved in disaggregation and refolding/remodeling of protein aggregates formed under stress conditions [95]. Of note, an additional specific task for mitochondrial chaperones is their involvement in the maintenance and replication of mitochondrial DNA [105]. The two most dynamic networks of mitochondria chaperones are the mt-Hsp70 (an Hsp70 family member) and the multimeric Hsp60-Hsp10 machineries [90]. The former assists translocation of preproteins across both the outer and inner mitochondrial membranes via an ATP-dependent process, whereas the latter is required for the folding of new protein precursors [106,107]. Chaperone Hsp78 (a member of the ClpB/Hsp104 family) is also implicated in mitostasis, fulfilling an essential role for the respiratory chain reaction and the mitochondrial genome’s integrity under severe stress [108]. In particular, Hsp78 in cooperation with co-chaperones (e.g., Hsp70) drives restoration of the original mitochondrial network/morphology or the translation and synthesis of mitochondrial DNA, upon heat shock [104,109]. Another molecular chaperone identified to be localized in the mitochondrial matrix is TRAP1 (tumor necrosis factor receptor-associated protein 1), a Hsp90-like chaperone, which is a critical regulator of a variety of physiological functions, including cell proliferation, differentiation, and survival [110,111]. Among other tasks, TRAP1 regulates the metabolic shift between oxidative phosphorylation to aerobic glycolysis (a hallmark of cancerous cells’ metabolism, called “Warburg Effect”) [112]. Interestingly, TRAP1 expression is up-regulated in mitochondria of various tumor cells, but is down-regulated in mitochondria of corresponding normal tissues [113]. Furthermore, TRAP1 prevents cell death induced by ROS accumulation or mitochondrial permeability transition pore opening [114,115,116].

The mitochondrial protein quality control surveillance mechanism is further supported by a complex network of mitochondrial proteases, which monitor all four mitochondrial compartments against deleterious accumulation of misfolded, misassembled or unfolded proteins [97]. Among a plethora of enzymes, this group of localized proteases includes: a) the ATP-dependent proteases, namely, the LON protease, the Clp Protease Proteolytic subunit (CLPP) and the presequence protease (PITRM1), located in the matrix, b) the mitochondrial AAA (ATPases Associated with diverse cellular Activities) and PARL (Presenilins-associated rhomboid-like protein) proteases of the inner mitochondrial membrane; and c) the two ATP independent proteases, the ATP23 and HTRA2, and the mitochondrial oligopeptidase M (MEP) which reside in the intermembrane space [94,97,117,118]. Collectively, human mitodegradome consists of at least 25 exclusively mitochondrial components that can be grouped into three different catalytic classes: (a) 2 Cys proteases, (b) 15 metalloproteases and (c) 8 Ser proteases [117]. Depending on their function, location as well as structural and proteolytic characteristics, mitochondrial proteases (mitoproteases) can be divided into two groups. The first group is formed by 20 “intrinsic mitoproteases”, the functional activity of which is mostly performed in the mitochondrion; the second group includes five catalytically deficient but functionally proficient mitochondrial proteins, termed “pseudo-mitoproteases”. Even though these pseudo-mitoproteases lack some key residues for catalysis, they exert a regulatory effect on homologous proteases. A discrete group comprising at least 20 proteases are transiently translocated to mitochondria to perform additional proteolytic activities (mainly related to apoptosis or autophagy), under certain circumstances (i.e., in response to excessive stress) [117]. Importantly, the role of mitoproteases in mitochondrial homeostasis extends far beyond their basic function as proteolytic and degradative enzymes. By ensuring proper protein import, maturation and processing, influencing the half-lives of key regulatory proteins, and activating/deactivating proteins essential for core mitochondrial activities in a highly specific and regulated manner, mitoproteases have been recognized as key regulators of mitochondrial gene expression, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Furthermore, new evidence highlights the impact of impaired or dysregulated function of mitochondrial proteases in the control of ageing and longevity [119,120,121,122,123,124].

Recently, an additional role for the cytosol-localized ubiquitin-proteasome system (UPS), a key component of the cellular proteostasis network (PN), has begun to emerge regarding mitostasis. Particularly, UPS has been implicated in protein quality control of the mitochondrial outer membrane or protein import into the organelle [125,126,127]. Despite the fact that no specific mitoproteases have been identified so far at the outer mitochondrial membrane, a number of ubiquitin ligases have been found to reside to the cytosolic side of this compartment, including the mitochondrial ubiquitin ligase MITOL [also known as membrane-associated ring finger 5 (MARCH-V)], the mitochondrial E3 ubiquitin protein ligase 1 (MULAN), and the mitochondrial distribution and morphology protein 30 (Mdm30) [128]. Of note, UPS is also involved in mitochondrial fusion and fission [94,129,130,131,132,133,134]. Since the mitochondrial outer membrane accommodates several proteins involved in mitochondrial morphology and dynamics, and given the crucial role of mitochondrial morphology and dynamics for cell cycle progression and/or cell fate, it becomes prevalent how important the protein quality control of this specific mitochondrial compartment is [135,136,137]. Consistent with its contribution in controlling the outer membrane protein quality is the role of UPS in the regulation of the proteome of other mitochondrial compartments, such as the matrix (oligomycin sensitivity-conferring protein/OSCP, component of the mitochondrial membrane ATP synthase), the intramembrane space (endonuclease G), and the inner membrane (Uncoupling Protein-2/UCP2 and Uncoupling Protein-3/UCP3) [138,139,140].

Of great importance, during impaired mitochondrial function and/or instability of the mitochondrial proteome, cells can employ a specific ubiquitin-proteasome mitochondrial stress response known as mitochondrial UPR (UPRmt). This mitochondrial stress response mechanism is characterized by the induction of mitochondrial proteostasis machinery (such as mitochondrial molecular chaperones and proteases) as well as anti-oxidant genes to limit damage due to increased generation of reactive oxygen species [141,142]. UPRmt provides a link between mitochondrial survival pathways and the multitasking UPS [94]. In case of irreversible impairment of mitostasis, UPRmt induces outer mitochondrial membrane-associated degradation and/or mitophagy or even apoptosis [94,97].

2.3. Mitochondrial Dynamics

Another aspect regarding the maintenance of mitochondrial homeostasis is mitochondrial dynamics, a term used to encompass three main events: fusion, fission, and mitophagy (i.e., selective mitochondrial autophagy) [143,144]. Fusion dilutes and rearranges the matrix content of a damaged mitochondrion (e.g., a mitochondrion containing unfolded proteome or mutated DNA) with a healthy one, whereas fission partitions damaged material to daughter organelles, thus functioning as mitochondrial quality control mechanisms. During cell cycle progression, mitochondria typically elongate in the G1/S phase, in order to ensure greater ATP supply required to sustain cell duplication, and fragment in the G2/M phase to be equally divided to daughter cells as well as to partition damaged material to daughter organelles [145,146,147,148]. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. Notably, the relative rates of fusion and fission mainly define mitochondrial architecture. Furthermore, both these processes are closely related to the biochemical and metabolic cell status [145,149,150].

In mammalian cells, mitochondrial fusion is primarily orchestrated by large dynamin-related GTPases termed mitofusin 1 (MFN1) and mitofusin 2 (MFN2), plus optic atrophy protein 1 (OPA1) [151,152]. MFN1 and MFN2 are transmembrane GTPases located in the outer mitochondrial membrane (OMM) and their primary function is to mediate the first step of mitochondrial fusion (fusion of the OMM), whereas OPA1 protein, a third GTPase of the dynamin family, is situated within the intermembrane space tightly associated with the inner mitochondrial membrane (IMM). Its primary function is to mediate fusion of the IMM. In addition, OPA1 has multiple roles, namely in maintaining cristae structure within the mitochondria, in maintaining inner membrane (IM) integrity and IM potential, and in preventing release of cytochrome c from the cristae [153]. The core components of mitochondrial fission (division) machinery are dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff), and mitochondrial dynamin proteins of 49 and 51 kDa (MiD49/51) [154]. In addition to these mitochondrial components, the endoplasmic reticulum (ER) and actin cytoskeleton also contribute in mitochondrial division [154]. If the above fails, mitophagy is the next level of defense, ensuring the selective degradation of damaged mitochondria. The best-known pathway mediating mitophagy is the one that depends on the serine/threonine kinase PINK1 (phosphatase and tensin homolog induced putative kinase 1) and Parkin, an E3 ubiquitin ligase [155]. The former localizes to mitochondria while the latter resides in the cytosol. Under normal steady-state conditions, PINK1 undergoes a continuous import and sequential proteolysis cycle. This well-orchestrated process yields very low to undetectable levels of PINK1 on healthy mitochondria. PINK1 is stabilized specifically on the outer membrane of damaged mitochondria (e.g., due to depolarization or blocking mitochondrial import) flagging them for elimination. In particular, it activates Parkin’s E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins and drives mitophagy to completion through a positive feedback-loop [156].

3. Cross-Talks between Impaired Mitostasis and Cellular Senescence

3.1. Impaired Mitochondrial Biogenesis and Cellular Senescence

Inefficient maintenance of the mitochondrial genome’s integrity due to defects/errors in the mtDNA replication machinery and/or failure in the repair of mtDNA damage leads to impaired mitochondrial biogenesis, mitochondrial dysfunction and bioenergetic failure of the cell. Despite the well-documented role of mutated mtDNA as a cause of different types of mitochondrial diseases [157], its impact as a driver of senescence is less investigated. Early studies, based on restriction enzyme analysis of mtDNA in fibroblasts undergoing replicative senescence, excluded the presence of deletions, insertions rearrangements, or single base changes [158]. Nevertheless, it was more recently shown in vitro that mtDNA-depleted cells display senescent phenotypes (resistance to cell death, increased SA-β-gal activity, lipofuscin accumulation), implicating the potential involvement of mtDNA damage in cellular senescence [159]. Indeed, current knowledge supports that all of the five nuclear-derived transcription factors that govern mitochondrial biogenesis, POLγ, PGC-1α, NRF-1/2, sirtuins, and TFAM have been somehow involved in cellular senescence [60].

Particularly, both the mitochondrial mass and the mRNA levels of PGC1α and NRF-1, were found to increase during replicative senescence in vitro [160]. This upregulation was attributed to de novo synthesis of the nuclear transcriptional factors as a compensatory response to increased ROS production and the impaired membrane potential [160]. On the other hand, overexpression of the transcriptional co-activator PGC-1α in human fibroblasts resulted in an increase of the mitochondrial encoded marker protein COX-II, consistent with the ability of PGC-1 to increase mitochondrial number, and accelerated the rate of cellular senescence [161].

In a model of OIS, oncogenic Ras induced multiple regulators of mitochondrial biogenesis, including NRF2a, PGC1α, PGC1β, and TFAM. Strikingly, even though the increased mRNA levels were documented two days after the induction of oncogenic Ras, the expression of these genes was even higher when the cells had established a full senescent state. Of note, newly formed mitochondria in Ras-senescent cells were dysfunctional, with compromised ATP generation and increased ROS, due to the continuous oncogenic stress [162]. At variance with these findings, in mice with dysfunctional telomeres, p53-dependent PGC1α and PGC-1β repression was shown to mediate cellular growth arrest [163,164]. PGC1 down-regulation resulted in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and decreased expression of ROS detoxifying enzymes. Enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration.

In human cells and POLGD257A mutated mice (i.e., a mutation in the proofreading domain of the mtDNA polymerase PolG), mitochondrial compromise due to genotoxic stress, caused by mtDNA depletion or accelerated rate of mtDNA mutations, has been associated with the induction of cellular senescence with a distinct secretory phenotype, one that lacks the IL-1-dependent inflammatory arm [38]. Importantly, elimination of the mitochondrial sirtuins SIRT3 and to a lesser extent SIRT5, but not other sirtuins, drove the senescent phenotype. In addition, while SIRT3 shRNA induced senescence in wild-type (WT) mouse embryonic fibroblasts (MEFs), MEFs from SIRT3 knockout mice did not senesce, thus suggesting that embryonic versus post-development acute loss of SIRT3 can have different effects [38]. Of great importance, mitochondrial dysfunction has been found to upset the balance of NAD+ (the oxidized form of nicotinamide adenine dinucleotide), a coenzyme that, besides its role in redox metabolism and cell signaling, also serves as a co-factor for sirtuins [165]. At the same time, both mitochondrial sirtuins and cytosolic NAD+ depletion have been implicated in the induction of premature senescence-like phenotype [38,166,167,168], therefore further underscoring the possible role of mitochondrial biogenesis impairment in cellular senescence through discoordination of energy metabolism [19].

Furthermore, in accordance with the notion that increased mitochondrial oxidative metabolism is a feature of cellular senescence, recent evidence suggests that the metabolic shift (i.e., increased mitochondrial oxidative metabolism) which characterizes cellular senescence, occurs in parallel with enhanced mitochondrial biogenesis [11,169]. Mechanistically, increased mitochondrial content was found to be regulated through a newly identified pathway, involving mechanistic target of rapamycin (mTOR)-dependent activation of PGC-1β, a key player in mitochondrial biogenesis [37]. It was also demonstrated that the reduction in mitochondrial content, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence and attenuates SASP and ROS-dependent persistence of DDR [37].

Another cornerstone of mitochondrial biogenesis and maintenance of the mitochondrial genome’s integrity is the nuclear-encoded mitochondrial proteins. Notably, nuclear DNA is under the constant threat of oxidative damage due to ROS production, and from this point of view mitochondria seem to have a great impact as major contributors of oxidative stress. Nevertheless, the role of mitochondria extends far beyond the well-established impact of mitochondrial ROS as nuclear DNA damaging factors that activate a DDR and induce senescence [11,162]. Indeed, excessive mtDNA depletion can induce a reprogramming of nuclear gene expression patterns including genes involved in metabolism, stress response and growth signaling, termed “retrograde response” [170]. Dysfunctional mitochondria can actively secrete multiple forms of damage associated molecular patterns (DAMPS)—also known as mitochondrial alarmins—among of which are mtDNA and TFAM (the principal regulator of mtDNA transcription and stabilization). These molecules exit the mitochondrial compartment, enter the cytoplasm or the extracellular space, and bind to pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and NOD-like receptors (NLRs), thus activating the immune system and triggering a significant pro-inflammatory response [171,172]. Among others, cytosolic mtDNA can be recognized by and engage the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway which has been recently identified as a crucial regulator of senescence and the SASP [173]. Of great importance, cytochrome c, which under normal conditions is restricted within the mitochondrial intermembrane space where it functions as an electron carrier in the electron transport chain and as a scavenger of ROS, has also been identified as capable of serving as DAMP [171,172]. Indeed, cytochrome c seems to exert a biphasic role: apoptogenic or immunomodulatory. Upon stimuli, the release of cytochrome c into the cytoplasm is considered to be a critical event to facilitate the inflammation-free process of apoptosis, whereas when translocated extracellularly cytochrome c functions as a mitochondrial DAMP eliciting an inflammatory response [171,172]. Unfortunately, current knowledge regarding the spatiotemporal role of cytochrome c as a DAMP is still in its infancy and more studies are needed to elucidate the underlying molecular mechanisms.

It has also been demonstrated that a functional link between mitochondria and telomeres exists, suggesting a crosstalk between replicative senescence and mitochondria, with mitochondrial biogenesis holding a protagonist role [163]. Briefly, according to the proposed model, telomere-dysfunction-induced p53 represses the PGC network and compromises mitochondrial biogenesis. Specifically, in mice with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes [163,164]. This results in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and down-regulated expression of ROS detoxifying enzymes. However, enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration. Additionally, it has been proposed that telomerase protects mitochondria against oxidative stress through a telomere length-independent function. In particular, TERT is reversibly excluded from the nucleus upon both acute and chronic oxidative stress conditions, in a dose- and time-dependent manner, exported to the cytosol and colocalizes with/accumulates in mitochondria where it confers multilevel mitochondrial protection: decreases mitochondrial superoxide production and cell peroxide levels, enhances mitochondrial membrane potential, improves mitochondrial coupling, and reduces mtDNA damage, altogether suggesting improvement of the overall mitochondrial function [174]. In accordance, increased endogenous formation of ROS after continuous cultivation of endothelial cells was accompanied by both mitochondrial DNA damage and an export of nuclear TERT protein from the nucleus into the cytoplasm, followed by the onset of replicative senescence. Likewise, antioxidants delayed the onset of replicative senescence by counteracting the increased ROS production and preventing nuclear export of TERT protein [175]. Moreover, TERT overexpression suppressed retrograde response [170], which represents a characteristic feature of replicative senescence [29]. Of note, these finding are in discrepancy with earlier reports according to which ectopically expressed TERT in human fibroblasts under acute oxidative stress resulted in increased mtDNA damage [176,177,178].

Beyond ROS accumulation, mitochondrial dysfunction results in a decline in iron-sulfur cluster biogenesis which can stimulate nuclear genomic instability, which is manifested as a gradual slow of growth rate, a high frequency of cell death, or, surprisingly, cell-cycle arrest in the G1 phase and at a metabolically active status, reminiscing of senescence [179]. This cellular crisis would be expected to drive further decline in mitochondrial function via genotoxic activation of p53 and associated repression of PGC-1 family coactivators. Iron sulfur (Fe/S) clusters serve catalytic and structural functions in many cellular proteins, thus being involved in a wide variety of cellular processes such as enzymatic reactions, respiration, cofactor biosynthesis, ribosome biogenesis, regulation of gene expression, and DNA-RNA metabolism [180]. Noteworthy, in fibroblasts expressing oncogenic Ras, knocking down Rieske iron sulfur protein (RISP) of complex III leads to ROS production, a decrease in ATP synthesis, and activation of the AMPK pathway which triggers a robust senescent phenotype [162].

Another aspect of the involvement of mitochondrial genome instability in cellular senescence is its effect on the stem cell’s pool integrity. In mtDNA mutator mice, age-dependent accumulation of somatic mtDNA mutations has been suggested to affect stem cell homeostasis and eventually accelerates stem cell senescence. Potential mechanisms whereby mtDNA mutagenesis drives senescence in a stem cell population include loss of the mitochondrial membrane potential (MMP), blockage of metabolic shift during differentiation (from glycolysis to OXPHOS), imbalanced fusion and fission events (towards fission), abnormal mitophagy and/or autophagy, as well as ROS production [181].

3.2. Impaired Mitochondrial Dynamics and Cellular Senescence

The potential involvement of deregulated mitochondrial fusion, fission and mitophagy in cellular senescence has been suggested by a number of studies. Generally, in senescent cells, mitochondrial dynamics are considered to be strongly reduced [182]. Highly elongated mitochondria, accompanied with enhanced cristae structure and increased mitochondrial content, have been described during stress-induced premature senescence [23]. In line with this notion, the ultrastructural study of senescent cells of p21-inducible precancerous and cancerous cellular models (Li-Fraumeni and Saos-2 cell lines, respectively) studied previously by our group [183,184], revealed defective enlarged mitochondria in the majority of cells with perturbed morphology of cristae. Specifically, they were distributed mostly at the periphery of mitochondria or shaping circular formations, while in other mitochondria they were partially or totally lost (Figure 2). The above observations indicate dynamic remodeling of cristae responding to the metabolically needs of senescent cells or reflecting respiratory chain deficiency [185].

Cells 08 00686 g002 550 Figure 2. Senescent cell with enlarged mitochondria with disturbed morphology of cristae distributed mostly at their periphery, forming circular constructions, or partially lost. N: nucleus. Scale bar: 1 μm.

Moreover, some of the mitochondria were elongated (Figure 3) or branched (Figure 4) with abnormal distribution or partial loss of cristae indicating disturbance of mitochondrial dynamics.

Cells 08 00686 g003 550 Figure 3. Elongated mitochondria in the cytoplasm of a senescent cell with partial loss of cristae. N: nucleus. Scale bar: 500 nm.

Cells 08 00686 g004 550 Figure 4. Branched mitochondrion in the cytoplasm of a senescent cell with partial loss of cristae. Scale bar: 500 nm.

As previously shown by Lee and colleagues [186], mitochondrial elongation has been associated with down-regulation of Fis1 along with an overall enhancement of fusion activity, as manifested by increased expression ratio(s) of Mfn proteins to fission modulators (Mfn > Drp1 and/or Mfn > Fis1). Direct induction of mitochondrial elongation by blocking the mitochondrial fission process was sufficient to develop a senescent phenotype with increased ROS production, whereas overexpression of Fis1 protein blocked the mitochondrial elongation and partially reversed the senescent phenotype. Remarkably, in case of simultaneous depletion of Fis1 and OPA1 (the critical component of mitochondrial fusion) or sequential depletion of OPA1 followed by Fis1 shRNA transfection, senescent-associated changes were significantly suppressed, and the cell proliferation rate was restored, even though mitochondria remained severely fragmented. This indicates that it is the fusion/fission imbalance that causes sustained mitochondrial elongation and not just the inhibition of mitochondrial fission per se, that triggers senescence-associated changes in Fis1 knockdown cells [186].

The formation of long and interconnected mitochondria in human endothelial cells (HUVECs) cultivated in vitro till they reached replicative senescence was associated with a reduced expression of Drp1 and Fis1 correlated with increased PINK1 mRNA levels [187]. The same mitochondrial architectural configuration is also adopted due to MARCH5 depletion that binds hFis1, Drp1 and Mfn2 [130,131,188]. The loss of MARCH5 facilitates mitochondrial elongation and interconnection either by suppression of Drp1-mediated mitochondrial or a marked increase in the steady-state levels of Mfn1, thus imposing a cellular stress which ultimately triggers cellular senescence [189]. Disruption of mitochondrial dynamics has been implicated in the induction of cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial fragmentation induced by knockdown of fusion proteins, OPA1 or MFN, was shown to boost mitochondrial ROS production and accelerate cellular senescence in HBEC exposed to cigarette smoke extract [190].

Taken together, in vitro studies show that senescent cells are typically associated with an overall shift toward more fusion events [31]. Whether mitochondrial elongation is causal to or epiphenomenon of cellular senescence has not yet been fully elucidated. Mitochondrial elongation could represent an energy-save attitude or even an adaptation to the impaired mitochondrial biogenesis that characterizes cellular senescence [145,187]. Others suggest that mitochondrial lengthening renders cells more resistant against apoptotic stimuli or autophagic degradation, thus facilitating cell viability [191,192,193,194,195,196]. Of interest, elongated and interconnected mitochondria of senescent endothelial cells exhibit a much higher threshold for stress-induced mitochondrial damage [187]. However, contradictory findings support that, in a longitudinal basis, prolonged elongated mitochondria ultimately result in higher production of intracellular ROS and diminished mitochondrial respiration activity [23].

Time-course analysis showed that mitochondrial population turnover is gradually declined in senescent cells in vitro and in vivo [197,198], as a consequence of reduced basal or induced autophagic activity, or due to lysosomal dysfunction and overload, which eventually overcome mitophagy capability [199]. This may partly explain the increased mitochondrial content of senescent cells [11,37].

It has been demonstrated that defective mitophagy and perinuclear build-up of damaged mitochondria is a critical contributor to the induction of cellular senescence in cigarette smoke extract-treated lung fibroblasts and small airway epithelial cells (SAECs). This is associated with impaired Parkin translocation and an exacerbation of mitochondrial ROS-induced DNA damage foci formation, due to cytoplasmic p53 accumulation [200]. Strikingly, in vitro experiments showed that Parkin overexpression was sufficient to induce mitophagy and repress accelerated cellular senescence in HBEC in response to cigarette smoke exposure, even in the setting of reduced PINK1 protein levels. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, suggesting that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy [201].

From the opposite point of view, cellular senescence directly contributes to dysregulated mitophagy that drives Senescence-Associated Mitochondrial Dysfunction (SAMD) [199]. Of great interest, SAMD is considered to be a major regulator of the senescent phenotype, especially of the SASP, thus contributing to the development and stability of the senescent cell cycle arrest [11,38,202].

Furthermore, the regulation and functional role of mitophagy in cellular senescence appears also to be related to changes in general autophagy, even though things are less clear. By removing damaged macromolecules or organelles, autophagy prevents garbage catastrophe, thus exerting an anti-senescence role. However, on a short-term basis, autophagy facilitates the synthesis of senescence-associated secretory proteins, thus suggesting to be a pro-senescence mechanism [203]. It was demonstrated that autophagy impairment with lysosomal and mitochondrial dysfunction is crucial for oxidative stress-induced cell senescence [27]. On the contrary, targeted mitochondrial damage due to oxidative stress-upregulated autophagy factors LC3B, ATG5 and ATG12, enhanced mitophagy and prevented senescence [204].

4. Future Perspectives

Intriguingly, the onset of the senescent phenotype is not always beneficial. Short-term accumulation of senescent cells has a positive outcome in embryonic development, tissue repair, and cancer prevention. On the other hand, its chronic persistence (chronic senescence) leads to detrimental results, such as aging and age-related pathologies [205]. Respectively, impaired mitochondrial function as well as cellular senescence are both implicated in aging and age-related pathologies such as cancer, neurodegenerative and cardiovascular diseases [206,207]. Except for the mitochondrial free radical theory of aging which highlights the accumulation of mitochondrial oxidative damage (due to progressive mitochondrial dysfunction and increased production of ROS) as the driving force of age-related phenotypes, the current view supports the notion that aging is, among other causes, the result of generalized impaired mitochondrial bioenergetics that cause global cellular damage [119,208]. In addition, cellular senescence has also been recognized as a hallmark of aging; although in young organisms, cellular senescence acts as a failsafe program to prevent the propagation of damaged cells, the deficient clearance of senescent cells in aged tissues results in accumulation of senescent cells which exert deleterious effects and jeopardize tissue homeostasis [208].

This also has therapeutic perspectives. Elimination of senescent cells in a selective manner over normal cells has been proven to prevent or delay tissue dysfunction and to maximize healthy lifespan as exemplified in progeroid animal models [97]. Moreover, a new research field has opened up, where strategies can be designed to reduce the burden of senescent cells in an organism and thus contribute to the treatment of pathological conditions and age-related abnormal conditions. Given that mitochondrial dysfunction—at least partly—drives senescence, targeting mitochondrial dysfunction emerges as a potential therapeutic strategy to counteract the negative impact of chronic senescence. In this regard, resveratrol, a polyphenol which has been shown to exert immunomodulatory, anti-inflammatory and antioxidative effects, with an ability to prolong lifespan and protect against age-related disorders in different animal models, has gained attention as a potential senolytic agent [209]. It has been demonstrated that resveratrol improves mitochondrial function and protects against metabolic disease by inducing PGC-1a and SIRT1 activity [210]. Moreover, it was recently reported the role for mitochondria in specific elimination of senescent cells using mitochondria-targeted tamoxifen (MitoTam), based on the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition [211].

SASP action is considered to be the major modulating factor of the bimodal behavior that senescent cells exert. Therefore, mitochondrial-targeted interventions for selective inhibition of the SASP components can elicit anti-senescent effects. As previously mentioned, senescent cells exhibit impaired mitochondrial biogenesis and metabolic shifts, namely a decrease in NAD+ and an increase in AMP and ADP. These changes have been shown to contribute to both the senescent cell cycle arrest as well as the regulation of the SASP via multiple signaling pathways. The core idea is that mitochondrial ablation upon induction of senescence, selectively inhibits common pro-inflammatory and pro-oxidant aspects of the senescent phenotype, while preserving the cell cycle arrest, which in specific context (e.g., late stage of tumorigenesis) is desirable. In this regard, possible mechanisms whereby mitochondria that have abolished normal function are implicated in SASP regulation include: (a) mTOR activation due to sustained DDR which promotes PGC1-β dependent biogenesis of new, yet dysfunctional, mitochondria that further increase ROS production, thus replenishing DDR through a positive feedback-loop, (b) AMPK activation (due to increased AMP/ATP and ADP/ATP ratios) which in turn activates p53 and subsequently stabilizes p16 and p21, thus promoting cell cycle arrest, (c) low NAD+-driven inhibition of poly-ADP ribose polymerases (PARPs) which are dispensable for DNA repair after genotoxic stress, (d) low NAD+-driven inactivation of sirtuins, which normally serve as inhibitors of NF-kB activity and transcriptional repressor of SASP genes, (e) initiation of an innate immune response due to cytosolic exit of damaged mtDNA molecules that exert pro-inflammatory effects [18]. Moreover, recent studies indicate that mTOR inhibition contributes to reduction of the SASP by decreasing translation of the proteins interleukin-1 α (IL-1A) and MAP kinase-activated protein kinase 2 (MAPKAPK2) or via reduction of mitochondrial biogenesis and ROS-dependent persistence of a DDR [37,212,213].

In addition, activation of autophagy by inhibition of mTORC was shown to efficiently suppress senescence phenotypes in a number of studies [27,37,202]. Of great importance, the introduction of senolytic strategies is a relative novel and unexplored field. A high level of caution is needed since new findings are coming into light underscoring possible undesirable side effects. For example, a category of senolytic drugs that function as inhibitors of the anti-apoptotic BCL-2 family proteins has been shown to induce a minor mitochondrial outer membrane permeabilization (miMOMP) due to limited caspase activation, not sufficient to induce apoptosis, yet capable of causing increased DNA damage and genomic instability, even in neighboring non-senescent cells [18,214]. Of clinical relevance, a recently developed chemically modified mitochondria-targeted doxorubicin derivative was shown to be less cardiotoxic and more effective than doxorubicin, against drug-resistant tumor cells overexpressing P-glycoprotein [215]. Even though the role of mitochondria in the various modes of cell death and cell physiology has been well known, their involvement in cellular senescence has only recently started to be elucidated. At the moment, a thorough understanding of the mechanisms governing the bidirectional connection between perturbations in mitochondrial homeostasis and cellular senescence is missing. Novel methodologies for the detection of cellular senescence and new technologies applied to the analysis of mitochondrial biochemistry continue to be developed, thus facilitating our understanding of these multifaceted organelles and elucidating the interplay between mitochondria and cellular senescence [216,217].

Author Contributions

Conceptualization, V.G.G., S.H, P.V.S.V and K.E.; Resources, P.V.S.V., M.K. and S.H.; Writing-Original Draft preparation, P.V.S.V., K.V., G.F., M.I.P., P.G.P., E.C., and M.K.; Writing-Review and Editing, S.H. and K.E.; Supervision, V.G.; Project Administration, V.G.; Funding Acquisition, V.G.

Funding

Financial support was from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants agreement No. 722729 (SYNTRAIN); the Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece; Pentagon Biotechnology Ltd., UK; DeepMed IO Ltd., UK and NKUA-SARG grants No 70/3/9816, 70/3/12128.

Conflicts of Interest

The authors declare no conflict of interest.

References

Gorgoulis, V.G.; Pefani, D.E.; Pateras, I.S.; Trougakos, I.P. Integrating the DNA damage and protein stress responses during cancer development and treatment. J. Pathol. 2018, 246, 12–40. [Google Scholar] [CrossRef]

Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]

Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 2008, 319, 1352–1355. [Google Scholar] [CrossRef] [PubMed]

Gorgoulis, V.G.; Halazonetis, T.D. Oncogene-induced senescence: The bright and dark side of the response. Curr. Opin. Cell Biol. 2010, 22, 816–827. [Google Scholar] [CrossRef]

Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef] [PubMed]

Burton, D.G.; Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 2014, 71, 4373–4386. [Google Scholar] [CrossRef] [PubMed]

Georgakopoulou, E.; Evangelou, K.; Havaki, S.; Townsend, P.; Kanavaros, P.; Gorgoulis, V.G. Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech. Ageing Dev. 2016, 156, 17–24. [Google Scholar] [CrossRef] [PubMed]

Liakou, E.; Mavrogonatou, E.; Pratsinis, H.; Rizou, S.; Evangelou, K.; Panagiotou, P.N.; Karamanos, N.K.; Gorgoulis, V.G.; Kletsas, D. Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging 2016, 8, 1650–1669. [Google Scholar] [CrossRef]

Salama, R.; Sadaie, M.; Hoare, M.; Narita, M. Cellular senescence and its effector programs. Genes 2014, 28, 99–114. [Google Scholar] [CrossRef]

Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88, 593–602. [Google Scholar] [CrossRef]

Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef] [PubMed]

Takahashi, A.; Ohtani, N.; Yamakoshi, K.; Iida, S.; Tahara, H.; Nakayama, K.; Nakayama, K.I.; Ide, T.; Saya, H.; Hara, E. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006, 8, 1291–1297. [Google Scholar] [CrossRef] [PubMed]

Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef] [PubMed]

Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The essence of senescence. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef] [PubMed]

Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]

Rodier, F.; Campisi, J.J. Four faces of cellular senescence. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef] [PubMed]

Kwon, S.M.; Hong, S.M.; Lee, Y.K.; Min, S.; Yoon, G. Metabolic features and regulation in cell senescence. BMB Rep. 2019, 52, 5–12. [Google Scholar] [CrossRef] [PubMed]

Birch, J.; Passos, J.F. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays 2017, 39. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Passos, J.F. Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta 2015, 1847, 1373–1379. [Google Scholar] [CrossRef]

Yoon, G.; Kim, H.J.; Yoon, Y.S.; Cho, H.; Lim, I.K.; Lee, J.H. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: Association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem. J. 2002, 366, 613–621. [Google Scholar] [CrossRef]

Yoon, Y.S.; Byun, H.O.; Cho, H.; Kim, B.K.; Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 2003, 278, 51577–51586. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Kim, M.J.; Yoon, G. PKCdelta phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-beta1-induced senescence. Free Radic. Res. 2014, 48, 1100–1108. [Google Scholar] [CrossRef] [PubMed]

Yoon, Y.S.; Yoon, D.S.; Lim, I.K.; Yoon, S.H.; Chung, H.Y.; Rojo, M.; Malka, F.; Jou, M.J.; Martinou, J.C.; Yoon, G. Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 2006, 209, 468–480. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Seo, Y.H. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp. Cell Res. 2012, 318, 1808–1819. [Google Scholar] [CrossRef] [PubMed]

Lafargue, A.; Degorre, C.; Corre, I. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med. 2017, 108, 750–759. [Google Scholar] [CrossRef] [PubMed]

Victorelli, S.; Passos, J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019, 1896, 21–29. [Google Scholar] [CrossRef] [PubMed]

Tai, H.; Wang, Z.; Gong, H.; Han, X.; Zhou, J.; Wang, X.; Wei, X.; Ding, Y.; Huang, N.; Qin, J.; et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017, 13, 99–113. [Google Scholar] [CrossRef] [PubMed]

Habiballa, L.; Salmonowicz, H.; Passos, J.F. Senescence Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic. Biol. Med. 2019, 132, 3–10. [Google Scholar] [CrossRef]

Passos, J.F.; Saretzki, G.; Ahmed, S.; Nelson, G.; Richter, T.; Peters, H.; Wappler, I.; Birket, M.J.; Harold, G.; Schaeuble, K.; et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007, 5, e110. [Google Scholar] [CrossRef]

Studencka, M.; Schaber, J. Senoptosis: Non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017, 8, 30656–30671. [Google Scholar] [CrossRef]

Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]

Lee, A.C.; Fenster, B.E.; Ito, H.; Takeda, K.; Bae, N.S.; Hirai, T.; Yu, Z.X.; Ferrans, V.J.; Howard, B.H.; Finkel, T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 1999, 274, 7936–7940. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 2003, 23, 8576–8585. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Fang, L.; Chen, A.; Pan, Z.Q.; Lee, S.W.; Aaronson, S.A. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 2002, 21, 2180–2188. [Google Scholar] [CrossRef] [PubMed]

Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]

Chen, H.; Ruiz, P.D.; McKimpson, W.M.; Novikov, L.; Kitsis, R.N.; Gamble, M.J. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol. Cell 2015, 59, 719–731. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 724, 42. [Google Scholar] [CrossRef] [PubMed]

Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016, 23, 303–314. [Google Scholar] [CrossRef] [PubMed]

Garesse, R.; Vallejo, C.G. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes. Gene 2001, 263, 1–16. [Google Scholar] [CrossRef]

Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]

Alexeyev, M.; Shokolenko, I.; Wilson, G.; Ledoux, S. The maintenance of mitochondrial DNA integrity-Critical analysis and update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef] [PubMed]

Bogenhagen, D.; Clayton, D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974, 249, 7991–7995. [Google Scholar] [PubMed]

Holt, I.J.; He, J.; Mao, C.-C.; Boyd-Kirkup, J.D.; Martinsson, P.; Sembongi, H.; Reyes, A.; Spelbrink, J.N. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]

Clayton, D.A. Replication of animal mitochondrial DNA. Cell 1982, 28, 693–705. [Google Scholar] [CrossRef]

Holt, I.J.; Lorimer, H.E.; Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000, 100, 515–524. [Google Scholar] [CrossRef]

Barrell, B.G.; Bankier, A.T.; Drouin, J. A different genetic code in human mitochondria. Nature 1979, 282, 189–194. [Google Scholar] [CrossRef] [PubMed]

Watanabe, K. Unique features of animal mitochondrial translation systems: The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc. Jpn. Acad. B 2010, 86, 11–39. [Google Scholar] [CrossRef]

Kasamatsu, H.; Robberson, D.L.; Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl. Acad. Sci. USA 1971, 68, 2252–2257. [Google Scholar] [CrossRef]

Arnberg, A.; van Bruggen, E.F.; Borst, P. The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim. Biophys. Acta 1971, 246, 353–357. [Google Scholar] [CrossRef]

Di Re, M.; Sembongi, H.; He, J.; Reyes, A.; Yasukawa, T.; Martinsson, P.; Bailey, L.J.; Goffart, S.; Boyd-Kirkup, J.D.; Wong, T.S.; et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009, 37, 5701–5713. [Google Scholar] [CrossRef]

He, J.; Mao, C.C.; Reyes, A.; Sembongi, H.; Di Re, M.; Granycome, C.; Clippingdale, A.B.; Fearnley, I.M.; Harbour, M.; Robinson, A.J.; et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell Biol. 2007, 176, 141–146. [Google Scholar] [CrossRef] [PubMed]

Antes, A.; Tappin, I.; Chung, S.; Lim, R.; Lu, B.; Parrott, A.M.; Hill, H.Z.; Suzuki, C.K.; Lee, C.G. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res. 2010, 38, 6466–6476. [Google Scholar] [CrossRef] [PubMed]

Annex, B.H.; Williams, R.S. Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol. Cell. Biol. 1990, 10, 5671–5678. [Google Scholar] [CrossRef] [PubMed]

Brown, W.M.; Shine, J.; Goodman, H.M. Human mitochondrial DNA: Analysis of 7S DNA from the origin of replication. Proc. Natl. Acad. Sci. USA 1978, 75, 735–739. [Google Scholar] [CrossRef] [PubMed]

Akman, G.; Desai, R.; Bailey, L.J.; Yasukawa, T.; Dalla Rosa, I.; Durigon, R.; Holmes, J.B.; Moss, C.F.; Mennuni, M.; Houlden, H.; et al. Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, E4276–E4285. [Google Scholar] [CrossRef]

Andersson, S.G.; Karlberg, O.; Canback, B.; Kurland, C.G. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 165–177. [Google Scholar] [CrossRef] [PubMed]

Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]

Gerhold, J.M.; Cansiz-Arda, ?.; Lõhmus, M.; Engberg, O.; Reyes, A.; van Rennes, H.; Sanz, A.; Holt, I.J.; Cooper, H.M.; Spelbrink, J.N. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 2015, 5, 15292. [Google Scholar] [CrossRef]

Kasashima, K.; Endo, H. Interaction of human mitochondrial transcription factor A in mitochondria: Its involvement in the dynamics of mitochondrial DNA nucleoids. Genes Cells 2015, 20, 1017–1027. [Google Scholar] [CrossRef]

Kelly, D.P.; Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18, 357–368. [Google Scholar] [CrossRef]

Ryan, M.T.; Hoogenraad, N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 2007, 76, 701–722. [Google Scholar] [CrossRef]

Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [PubMed]

van de Ven, R.A.H.; Santos, D.; Haigis, M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017, 23, 320–331. [Google Scholar] [CrossRef] [PubMed]

Longley, M.J.; Nguyen, D.; Kunkel, T.A.; Copeland, W.C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 2001, 276, 38555–38562. [Google Scholar] [CrossRef] [PubMed]

Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Front. Biosci. (Landmark Ed.) 2017, 22, 692–709. [Google Scholar] [PubMed]

Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017. [Google Scholar] [CrossRef]

Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: A PrimPol perspective. Biochem. Soc. Trans. 2017, 45, 513–529. [Google Scholar] [CrossRef]

Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 2016, 15, 1997–2008. [Google Scholar] [CrossRef]

Vasileiou, P.V.S.; Mourouzis, I.; Pantos, C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int. J. Mol. Sci. 2017, 18, 1821. [Google Scholar] [CrossRef]

Liu, P.; Demple, B. DNA repair in mammalian mitochondria: Much more than we thought? Environ. Mol. Mutagen. 2010, 51, 417–426. [Google Scholar] [CrossRef]

Myers, K.A.; Saffhill, R.; O’Connor, P.J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 1988, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]

Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J. Biol. Chem. 1988, 263, 6854–6856. [Google Scholar] [PubMed]

Pinz, K.G.; Bogenhagen, D.F. The influence of the DNA polymerase accessory subunit on base excision repair by the catalytic subunit. DNA Repair 2006, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]

Szczesny, B.; Tann, A.W.; Longley, M.J.; Copeland, W.C.; Mitra, S. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 2008, 283, 26349–26356. [Google Scholar] [CrossRef] [PubMed]

Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 2006, 106, 383–405. [Google Scholar] [CrossRef] [PubMed]

Lakshmipathy, U.; Campbell, C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 1999, 27, 1198–1204. [Google Scholar] [CrossRef] [PubMed]

Thyagarajan, B.; Padua, R.A.; Campbell, C. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 1996, 271, 27536–27543. [Google Scholar] [CrossRef] [PubMed]

Coffey, G.; Lakshmipathy, U.; Campbell, C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res. 1999, 27, 3348–3354. [Google Scholar] [CrossRef]

Tadi, K.S.; Sebastian, R.; Dahal, S.; Babu, R.K.; Choudhary, B.; Raghavan, S.C. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol. Biol. Cell 2016, 27, 223–235. [Google Scholar] [CrossRef]

Bacman, S.R.; Williams, S.L.; Moraes, C.T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 2009, 37, 4218–4226. [Google Scholar] [CrossRef]

Mason, P.A.; Matheson, E.C.; Hall, A.G.; Lightowlers, R.N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 2003, 31, 1052–1058. [Google Scholar] [CrossRef] [PubMed]

de Souza-Pinto, N.C.; Mason, P.A.; Hashiguchi, K.; Weissman, L.; Tian, J.; Guay, D.; Lebel, M.; Stevnsner, T.V.; Rasmussen, L.J.; Bohr, V.A. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 2009, 8, 704–719. [Google Scholar] [CrossRef] [PubMed]

Kamenisch, Y.; Fousteri, M.; Knoch, J.; von Thaler, A.K.; Fehrenbacher, B.; Kato, H.; Becker, T.; Dollé, M.E.; Kuiper, R.; Majora, M.; et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 2010, 207, 379–390. [Google Scholar] [CrossRef] [PubMed]

Sumpter, R., Jr.; Sirasanagandla, S.; Fernández, Á.F.; Wei, Y.; Dong, X.; Franco, L.; Zou, Z.; Marchal, C.; Lee, M.Y.; Clapp, D.W.; et al. Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell 2016, 65, 867–881. [Google Scholar] [CrossRef] [PubMed]

Schmidt, O.; Pfanner, N.; Meisinger, C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11, 655–667. [Google Scholar] [CrossRef] [PubMed]

Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef] [PubMed]

Lopez, M.F.; Kristal, B.S.; Chernokalskaya, E.; Lazarev, A.; Shestopalov, A.I.; Bogdanova, A.; Robinson, M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis. 2000, 21, 3427–3440. [Google Scholar] [CrossRef]

Nash, R.; Weng, S.; Hitz, B.; Balakrishnan, R.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hirschman, J.E.; et al. Expanded protein information at SGD:new pages and proteome browser. Nucleic Acids Res. 2007, 35, D468–D471. [Google Scholar] [CrossRef] [PubMed]

Rezaul, K.; Wu, L.; Mayya, V.; Hwang, S.I.; Han, D. A Systematic Characterization of Mitochondrial Proteome from Human T Leukemia Cell. Mol. Cell. Proteom. 2005, 4, 169–181. [Google Scholar] [CrossRef]

Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing mitochondrial proteins: Machineries and mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef]

Koehler, C.M.; Merchant, S.; Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 1999, 24, 428–432. [Google Scholar] [CrossRef]

Fox, T.D. Mitochondrial protein synthesis, import, and assembly. Genetics 2012, 192, 1203–1234. [Google Scholar] [CrossRef] [PubMed]

Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76, 723–749. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Trougakos, I.P. Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. Oxid. Med. Cell. Longev. 2016, 2016, 4587691. [Google Scholar] [CrossRef] [PubMed]

Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Evangelakou, Z.; Gorgoulis, V.G.; Trougakos, I.P. Proteome Stability as a Key Factor of Genome Integrity. Int. J. Mol. Sci. 2017, 18, 2036. [Google Scholar] [CrossRef] [PubMed]

Baker, B.M.; Haynes, C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 2011, 36, 254–261. [Google Scholar] [CrossRef] [PubMed]

Tatsuta, T. Protein quality control in mitochondria. J. Biochem. 2009, 146, 455–461. [Google Scholar] [CrossRef] [PubMed]

Matsushima, Y.; Kaguni, L.S. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta 2012, 1819, 1080–1087. [Google Scholar] [CrossRef]

Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351–366. [Google Scholar] [CrossRef]

Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [PubMed]

Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2001, 2, 339–349. [Google Scholar] [CrossRef] [PubMed]

Plesofsky Vig, N.; Brambl, R. Heat shock response of Neurospora crassa: Protein synthesis and induced thermotolerance. J. Bacteriol. 1985, 162, 1083–1091. [Google Scholar] [PubMed]

Schmitt, M.; Neupert, W.; Langer, T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol. 1996, 134, 1375–1386. [Google Scholar] [CrossRef] [PubMed]

Duchniewicz, M.; Germaniuk, A.; Westermann, B.; Neupert, W.; Schwarz, E.; Marszalek, J. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol. Cell. Biol. 1999, 19, 8201–8210. [Google Scholar] [CrossRef] [PubMed]

Gambill, P.D.; Voos, W.; Kang, P.J.; Miao, B.; Langer, T.; Craig, E.A.; Pfanner, N. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 1993, 123, 109–117. [Google Scholar] [CrossRef] [PubMed]

Cheng, M.Y.; Hartl, F.-U.; Martin, J.; Pollock, R.A.; Kalousek, F.; Neupert, W.; Hallberg, E.M.; Hallberg, R.L.; Horwich, A.L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337, 620–625. [Google Scholar] [CrossRef] [PubMed]

Lewandowska, A.; Gierszewska, M.; Marszalek, J.; Liberek, K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochim. Biophys. Acta 2006, 1763, 141–151. [Google Scholar] [CrossRef]

Germaniuk, A.; Liberek, K.; Marszalek, J. A bichaperone (Hsp70–Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J. Biol. Chem. 2002, 277, 27801–27808. [Google Scholar] [CrossRef]

Felts, S.J.; Owen, B.A.; Nguyen, P.; Trepel, J.; Donner, D.B.; Toft, D.O. The Hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 2000, 275, 3305–3312. [Google Scholar] [CrossRef]

Cechetto, J.D.; Gupta, R.S. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp. Cell Res. 2000, 260, 30–39. [Google Scholar] [CrossRef] [PubMed]

Yoshida, S.; Tsutsumi, S.; Muhlebach, G.; Sourbier, C.; Lee, M.J.; Lee, S.; Vartholomaiou, E.; Tatokoro, M.; Beebe, K.; Miyajima, N.; et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 2013, 110, E1604–E1612. [Google Scholar] [CrossRef] [PubMed]

Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef] [PubMed]

Montesano, G.N.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor necrosis factor associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 2007, 10, 342–350. [Google Scholar]

Im, C.N.; Lee, J.S.; Zheng, Y.; Seo, J.S. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 2007, 100, 474–486. [Google Scholar] [CrossRef] [PubMed]

Guzzo, G.; Sciacovelli, M.; Bernardi, P.; Rasola, A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget 2014, 5, 11897–11908. [Google Scholar] [CrossRef] [PubMed]

Quirós, P.M.; Langer, T.; López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16, 345–359. [Google Scholar] [CrossRef] [PubMed]

Pickart, C.M.; Cohen, R.E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5, 177–187. [Google Scholar] [CrossRef] [PubMed]

López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]

Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833, 195–204. [Google Scholar] [CrossRef]

Ieva, R.; Heißwolf, A.K.; Gebert, M.; Vögtle, F.N.; Wollweber, F.; Mehnert, C.S.; Oeljeklaus, S.; Warscheid, B.; Meisinger, C.; van der Laan, M.; et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 2013, 4, 2853. [Google Scholar] [CrossRef] [PubMed]

Vögtle, F.N.; Prinz, C.; Kellermann, J.; Lottspeich, F.; Pfanner, N.; Meisinger, C. Mitochondrial protein turnover: Role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 2011, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed]

Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef] [PubMed]

Konig, T.; Troder, S.E.; Bakka, K.; Korwitz, A.; Richter-Dennerlein, R.; Lampe, P.A.; Patron, M.; Muhlmeister, M.; Guerrero-Castillo, S.; Brandt, U.; et al. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Mol. Cell 2016, 64, 148–162. [Google Scholar] [CrossRef] [PubMed]

Hao, H.X.; Khalimonchuk, O.; Schraders, M.; Dephoure, N.; Bayley, J.P.; Kunst, H.; Devilee, P.; Cremers, C.W.; Schiffman, J.D.; Bentz, B.G.; et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325, 1139–1142. [Google Scholar] [CrossRef] [PubMed]

Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19, 4861–4870. [Google Scholar] [CrossRef] [PubMed]

Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380. [Google Scholar] [CrossRef]

Neutzner, A.; Benard, G.; Youle, R.J.; Karbowski, M. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis. Ann. N. Y. Acad. Sci. 2008, 1147, 242–253. [Google Scholar] [CrossRef]

Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 2008, 3, e1487. [Google Scholar] [CrossRef]

Yonashiro, R.; Ishido, S.; Kyo, S.; Fukuda, T.; Goto, E.; Matsuki, Y.; Ohmura-Hoshino, M.; Sada, K.; Hotta, H.; Yamamura, H.; et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006, 25, 3618–3626. [Google Scholar] [CrossRef]

Nakamura, N.; Kimura, Y.; Tokuda, M.; Honda, S.; Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006, 7, 1019–1022. [Google Scholar] [CrossRef] [PubMed]

Escobar-Henriques, M.; Westermann, B.; Langer, T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 2006, 173, 645–650. [Google Scholar] [CrossRef] [PubMed]

Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease. Biol. Chem. 2011, 286, 11649–11658. [Google Scholar] [CrossRef] [PubMed]

Wiedemann, N.; Stiller, S.B.; Pfanner, N. Activation and degradation of mitofusins: Two pathways regulate mitochondrial fusion by reversible ubiquitylation. Mol. Cell 2013, 49, 423–425. [Google Scholar] [CrossRef] [PubMed]

Solaki, M.; Ewald, J.C. Fueling the Cycle: CDKs in Carbon and Energy Metabolism. Front. Cell Dev. Biol. 2018, 6, 93. [Google Scholar] [CrossRef]

Salazar-Roa, M.; Malumbres, M. Fueling the Cell Division Cycle. Trends Cell Biol. 2017, 27, 69–81. [Google Scholar] [CrossRef] [PubMed]

Shiota, T.; Traven, A.; Lithgow, T. Mitochondrial biogenesis: Cell-cycle-dependent investment in making mitochondria. Curr. Biol. 2015, 25, 78–80. [Google Scholar] [CrossRef]

Margineantu, D.H.; Emerson, C.B.; Diaz, D.; Hockenbery, D.M. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007, 2, e1066. [Google Scholar] [CrossRef]

Radke, S.; Chander, H.; Schäfer, P.; Meiss, G.; Krüger, R.; Schulz, J.B.; Germain, D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem. 2008, 283, 12681–12685. [Google Scholar] [CrossRef]

Azzu, V.; Brand, M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 2010, 123, 578–585. [Google Scholar] [CrossRef]

Lin, Y.-F.; Cole, M.H. Metabolism and the UPRmt. Mol. Cell 2016, 61, 677–682. [Google Scholar] [CrossRef] [PubMed]

Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002, 21, 4411–4419. [Google Scholar] [CrossRef] [PubMed]

Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu. Rev. Physiol. 2015, 78, 505–531. [Google Scholar] [CrossRef] [PubMed]

Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]

Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]

Mitra, K.; Wunder, C.; Roysam, B.; Lin, G.; Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 2009, 106, 11960–11965. [Google Scholar] [CrossRef] [PubMed]

Schieke, S.M.; McCoy, J.P., Jr.; Finkel, T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 2008, 7, 1782–1787. [Google Scholar] [CrossRef]

Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529. [Google Scholar] [CrossRef]

Wai, T.; Langer, T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol. Metab. 2016, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]

Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387. [Google Scholar] [CrossRef] [PubMed]

Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef] [PubMed]

Olichon, A.; Emorine, L.J.; Descoins, E.; Pelloquin, L.; Brichese, L.; Gas, N.; Guillou, E.; Delettre, C.; Valette, A.; Hamel, C.P.; et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002, 523, 171–176. [Google Scholar] [CrossRef]

Patten, D.A.; Wong, J.; Khacho, M.; Soubannier, V.; Mailloux, R.J.; Pilon-Larose, K.; MacLaurin, J.G.; Park, D.S.; McBride, H.M.; Trinkle-Mulcahy, L.; et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014, 33, 2676–2691. [Google Scholar] [CrossRef] [PubMed]

Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol. 2015, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]

Jin, S.M.; Youle, R.J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 2012, 125, 795–799. [Google Scholar] [CrossRef] [PubMed]

Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [PubMed]

Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]

White, F.A.; Bunn, C.L. Restriction enzyme analysis of mitochondrial DNA in aging human cells. Mech. Ageing Dev. 1985, 30, 153–168. [Google Scholar] [CrossRef]

Park, S.Y.; Choi, B.; Cheon, H.; Pak, Y.K.; Kulawiec, M.; Singh, K.K.; Lee, M.S. Cellular aging of mitochondrial DNA-depleted cells. Biochem. Biophys. Res. Commun. 2004, 325, 1399–1405. [Google Scholar] [CrossRef]

Lee, H.C.; Yin, P.H.; Chi, C.W.; Wei, Y.H. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 2002, 9, 517–526. [Google Scholar] [CrossRef]

Xu, D.; Finkel, T. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 2002, 294, 245–248. [Google Scholar] [CrossRef]

Moiseeva, O.; Bourdeau, V.; Roux, A.; Deschênes-Simard, X.; Ferbeyre, G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol. Cell. Biol. 2009, 29, 4495–4507. [Google Scholar] [CrossRef] [PubMed]

Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359–365. [Google Scholar] [CrossRef] [PubMed]

Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [PubMed]

Kyrylenko, S.; Baniahmad, A. Sirtuin family: A link to metabolic signaling and senescence. Curr. Med. Chem. 2010, 17, 2921–2932. [Google Scholar] [CrossRef] [PubMed]

Zhang, B.; Cui, S.; Bai, X.; Zhuo, L.; Sun, X.; Hong, Q.; Fu, B.; Wang, J.; Chen, X.; Cai, G. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age 2013, 35, 2237–2253. [Google Scholar] [CrossRef] [PubMed]

Castex, J.; Willmann, D.; Kanouni, T.; Arrigoni, L.; Li, Y.; Friedrich, M.; Schleicher, M.; Wöhrle, S.; Pearson, M.; Kraut, N.; et al. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis. 2017, 8, e2631. [Google Scholar] [CrossRef]

Lee, S.M.; Dho, S.H.; Ju, S.K.; Maeng, J.S.; Kim, J.Y.; Kwon, K.S. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 2012, 13, 525–536. [Google Scholar] [CrossRef]

Kaplon, J.; Zheng, L.; Meissl, K.; Chaneton, B.; Selivanov, V.A.; Mackay, G.; van der Burg, S.H.; Verdegaal, E.M.; Cascante, M.; Shlomi, T.; et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498, 109–112. [Google Scholar] [CrossRef]

Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. [Google Scholar] [CrossRef]

Grazioli, S.; Pugin, J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front. Immunol. 2018, 9, 832. [Google Scholar] [CrossRef] [PubMed]

Dela Cruz, C.S.; Kang, M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2018, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]

Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef]

Shaheda, A.; Passos, J.F.; Birket, M.J.; Beckmann, T.; Brings, S.; Peters, H.; Birch-Machin, M.A.; Zglinicki, T.V.; Saretzki, T. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 2008, 121, 1046–1053. [Google Scholar] [CrossRef]

Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Skorvaga, M.; Annab, L.A.; Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004, 3, 399–411. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Mandavilli, B.S.; Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 2006, 314, 183–199. [Google Scholar] [PubMed]

Santos, J.H.; Meyer, J.N.; Van Houten, B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum. Mol. Genet. 2006, 15, 1757–1768. [Google Scholar] [CrossRef]

Veatch, J.R.; McMurray, M.A.; Nelson, Z.W.; Gottschling, D.E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009, 137, 1247–1258. [Google Scholar] [CrossRef]

Lill, R.; Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 2008, 77, 669–700. [Google Scholar] [CrossRef]

Su, T.; Turnbull, D.M.; Greaves, L.C. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed]

Jendrach, M.; Pohl, S.; Voth, M.; Kowald, A.; Hammerstein, P.; Bereiter-Hahn, J. Morpho-dynamic changes of mitochondria during aging of human endothelial cells. Mech. Aging Dev. 2005, 126, 813–821. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 2016, 18, 777–789. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Pappas, G.; Polyzos, A.; Kotsinas, A.; Svolaki, I.; Giakoumakis, N.N.; Glytsou, C.; Pateras, I.S.; Swain, U.; Souliotis, V.L.; et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed]

Cogliati, S.; Enriquez, J.A.; Scorrano, L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem. Sci. 2016, 41, 261–273. [Google Scholar] [CrossRef]

Lee, S.; Jeong, S.Y.; Lim, W.C.; Kim, S.; Park, Y.Y.; Sun, X.; Youle, R.J.; Cho, H. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 2007, 282, 22977–22983. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Klinkenberg, M.; Auburger, G.; Bereiter-Hahn, J.; Jendrach, M. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J. Cell Sci. 2010, 123, 917–926. [Google Scholar] [CrossRef] [PubMed]

Karbowski, M.; Neutzner, A.; Youle, R.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 2007, 178, 71–84. [Google Scholar] [CrossRef]

Park, Y.Y.; Lee, S.; Karbowski, M.; Neutzner, A.; Youle, R.J.; Cho, H. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123, 619–626. [Google Scholar] [CrossRef]

Hara, H.; Araya, J.; Ito, S.; Kobayashi, K.; Takasaka, N.; Yoshii, Y.; Wakui, H.; Kojima, J.; Shimizu, K.; Numata, T.; et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L737–L746. [Google Scholar] [CrossRef]

Lee, Y.J.; Jeong, S.Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed]

Sugioka, R.; Shimizu, S.; Tsujimoto, Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 2004, 279, 52726–52734. [Google Scholar] [CrossRef] [PubMed]

Beckenridge, D.G.; Stojanovic, M.; Marcellus, R.C.; Shore, G.C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 2003, 160, 1115–1127. [Google Scholar] [CrossRef] [PubMed]

Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–552. [Google Scholar] [CrossRef]

Karbowski, M.; Lee, Y.J.; Gaume, B.; Jeong, S.Y.; Frank, S.; Nechushtan, A.; Santel, A.; Fuller, M.; Smith, C.L.; Youle, R.J. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 2002, 159, 931–938. [Google Scholar] [CrossRef] [PubMed]

Gomes, L.C.; Di Benedetto, G.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef] [PubMed]

Dalle Pezze, P.; Nelson, G.; Otten, E.G.; Korolchuk, V.I.; Kirkwood, T.B.; Von Zglinicki, T.; Shanley, D.P. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 2014, 10, e1003728. [Google Scholar] [CrossRef] [PubMed]

Garcia-Prat, L.; Martinez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodriguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy maintains stemness by preventing senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef] [PubMed]

Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]

Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912–2929. [Google Scholar] [CrossRef] [PubMed]

Araya, J.; Tsubouchi, K.; Sato, N.; Ito, S.; Minagawa, S.; Hara, H.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T.; et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019, 15, 510–526. [Google Scholar] [CrossRef] [PubMed]

Demidenko, Z.N.; Blagosklonny, M.V. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 2008, 7, 3355–3361. [Google Scholar] [CrossRef] [PubMed]

Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Mol. Cells 2017, 40, 607–612. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Muster, B.; Bereiter-Hahn, J.; Jendrach, M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8, 47–62. [Google Scholar] [CrossRef] [PubMed]

Myrianthopoulos, V.; Evangelou, K.; Vasileiou, P.V.S.; Cooks, T.; Vassilakopoulos, T.P.; Pangalis, G.A.; Kouloukoussa, M.; Kittas, C.; Georgakilas, A.G.; Gorgoulis, V.G. Senescence and senotherapeutics: A new field in cancer therapy. Pharmacol. Ther. 2019, 193, 31–49. [Google Scholar] [CrossRef] [PubMed]

Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]

Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 100, 345–348. [Google Scholar] [CrossRef]

Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Søreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef]

Kornicka, K.; Sz?apka-Kosarzewska, J.; ?mieszek, A.; Marycz, K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2019, 23, 237–259. [Google Scholar] [CrossRef]

Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]

Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2019, 26, 276290. [Google Scholar] [CrossRef] [PubMed]

Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 2015, 17, 1205–1217. [Google Scholar] [CrossRef] [PubMed]

Laberge, R.-M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 2015, 17, 1049–1061. [Google Scholar] [CrossRef] [PubMed]

Ichim, G.; Lopez, J.; Ahmed, S.U.; Muthalagu, N.; Giampazolias, E.; Delgado, M.E.; Haller, M.; Riley, J.S.; Mason, S.M.; Athineos, D.; et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 2015, 57, 860–872. [Google Scholar] [CrossRef] [PubMed]

Buondonno, I.; Gazzano, E.; Jean, S.R.; Audrito, V.; Kopecka, J.; Fanelli, M.; Salaroglio, I.C.; Costamagna, C.; Roato, I.; Mungo, E.; et al. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol. Cancer Ther. 2016, 15, 2640–2652. [Google Scholar] [CrossRef] [PubMed]

Evangelou, K.; Lougiakis, N.; Rizou, S.V.; Kotsinas, A.; Kletsas, D.; Muñoz-Espín, D.; Kastrinakis, N.G.; Pouli, N.; Marakos, P.; Townsend, P.; et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 2017, 16, 192–197. [Google Scholar] [CrossRef] [PubMed]

Rizou, S.V.; Evangelou, K.; Myrianthopoulos, V.; Mourouzis, I.; Havaki, S.; Athanasiou, A.; Vasileiou, P.V.S.; Margetis, A.; Kotsinas, A.; Kastrinakis, N.G.; et al. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol. Biol. 2019, 1896, 119–138. [Google Scholar] [CrossRef]

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

欧美亚洲日本国产一区二区| 日韩手机在线不卡| 久久免精品一区二区| 亚洲精品一线二线三线区别| 少妇又紧又黄又粗又爽在线观看| 一级成人毛片免费观看| 欧美激情一区二区成人| 91绿帽人妻国内| 女女同性av片在线观看免费| 成人片在线观看地址KK4444| 欧美多级黄片免费观看 | 中文字幕乱码中文乱码网站| 毛片av在线免费观看| 中文字幕无一码在线不卡| 国产精品亚洲精品久久挡不住| 亚洲男人色天堂| 色噜噜狠狠爱综合影院| 久久精品免费一区二区三区综合| 中文字幕一区二区人妻无广告| 自拍视频对白精品| 国产成人精品国产亚洲一区二| 亚洲精品国产av网| 亚洲综合国产在不卡在线| 国产成人精品国产亚洲一区二| 中文日韩无码人妻 | 亞洲另類精品綜合| 欢迎观看本站影片高清无码中文字幕 | 香蕉APP在线播放| 狼友精品无码国产一区二区| 一区二区三区国产精品国产精黄| 008亚洲福利视频一区二区| 国产经典久久一级片| 成人99国产精品| 好满射太多了装不下了APP下载| 2021最新免费高清无码| 三级av黄片三级免费黄片| 精品久久久久久久人妻蜜臀?v| 亚洲一区成人久久久国产美女胸大| 亚洲天天色网址| 国产成人高潮免费观看精品| 欧美人与动牲交a精品| 五月天色网站| 岛国欧美日韩一二三四区 | 狠狠色婷婷综合天天久久丁香| 久久久久性色av免费毛片特级亻| 免费一区二区三区高清视频| 韩国A级毛片免费久久| 久久婷婷五月综合色俺也想去| 日韩激情无码精品免费| 两女互慰高潮视频在线观看| 国产里面还有黑人在线播放| 人成网站免费高清网站| 美国人性欧美XXXX| 精品日韩av在线电影| 久久永久免费人妻精品| 国产区精品在线| 重生之超级肉禽系统的小说| 色妺妺在线视频喷水| 国产精品一区二区高清| 亚洲精品高清久久91| 青青在线观看国产精品亚洲| 免费只有精品99久久国产综合精品| 亚洲国产一区二区a毛片妖精| 加勒比五月综合久久伊人| 更新每日日日夜夜| 自拍偷自拍亞洲精品10P| 亚洲主播视频在线观看| 亚洲日本vA中文字幕久久农民工| 欧美+日产+国产在线观看| 91福利高清在线观看| 国产精品成人永久在线四虎| 亚洲色久桃花在线| 污视频免费久久免费| 亚洲主播视频在线观看| 欧美亚洲国产精品综合在线| 色妞影院在线观看品爱网| 国产日产人妻精品精品| 成年av小说网站全部免费| 国产尤物午夜福利在线观看| 中文字幕免费一页日韩精品| 亚洲国产精品综合久久久麻豆| 国产精品无码AⅤ天天爽麻豆| 中国网站国产精品永久免费视频 | 久久99精品久久久久久园产越南| 国产成人性色生活片免费毛 | 久久免费视频观看二| 伊人直播网站| 91无码红桃一区二区三区| 日韩AV中文字幕第一页妓女| 久久久久国色a∨免费看| 亚洲欧洲日产国产AV无码| 国产日韩欧美一级视频在线观看 | 麻豆tv传媒免费版网址| 久久精品二区三区| 亚洲成人黄色在线观看| 欧美日韩亚洲m码色帝国| 久久综合三级电影| 亚洲欧美激情影院| 一级毛片国产a级毛片8| 蜜桃久久久精品极品聂小雨 | 美女视频在线观看网址| 国产不卡视频有码在线| 一二三四日本视频中文 | 黄色网站视频免费在线观看| 国产精品乱轮一区二区≡区| 欧美国产综合欧美视频&| 国产一区二区三区20p| 欧美日韩在线亚洲国产人| 国产精品一区二区哟哟视频| 亚洲欧洲av制服丝袜在线| 中文字幕第九页| 人妻av在线一区二区| 又黄又刺激无遮挡在线观看| 人妻少妇乱子伦精品无码专区毛片| 亚洲无码一线在线| 美女性一区二区三区| 99精品国产精品亚洲一级毛片| 粉嫩嫩极品美女视频| 欧美午夜亚洲福利在线| 中文字幕欧美高清| 最近中文字幕在线 一区二区三区| 欧美一级欧卅一级a| 亚洲综合激情中文字幕乱码| a级视频在线免费观看| 久久久er热这里只有精品2| 欧洲肉欲K8播放毛片| 亚洲乱码一区二区欧美在线观看| 亚洲熟妇熟女久久精品日韩综合 | 97影院理论午夜论不卡| 日韩三级AV 在线免费电影| 美洲亚洲精品高清视| 亚洲va久久久噜噜噜熟女软件| 欧美一级黄片操嫩b喷白浆| 亚洲精品乱码久久麻菊| 欧美自拍另类欧美综合图| 99r少妇极品熟妇人妻无码| 国产无遮挡裸露视频免费| 性色av一区二区三区免费看| 久久免费视频观看二| 亞洲熟婦少婦任你躁在線觀看無碼| 欧美高清强视频| 1区2区3区国产精品| 美国毛片舔鸡吧视频尤物视频| 夫妻性生活几天一次属正常?| 日本免费试看| 国产午夜免费福利yw自拍| 欧美人妻少妇自拍| 99r精品视频只有精品高清6| 久久久国产精品在线观看| 亚洲v欧美v日韩v中文字幕| 国产精品人成先锋影音欧美| 国产色欲?V一区二区三区| 中国老熟妇性色老熟妇性| 咪咪爱中文字幕| 色婷婷樱桃Av一区二区| 天天久久av每天| 亚洲欧洲精品中文在线| 粉色视频在线观看下载| 亚洲无码久久狠狠| 日韩AV更新在线看| 有码在线播放| 中文字幕一区二区5566| 久久九九精品久久久久久| 日韩欧美国产电影中文字幕| 亚洲欧洲日产国码av系列天堂| 久久男人av资源网站| 97人妻无码成人精品一区二区 | 秋霞影院午夜福利| 深夜国产日韩| 无码麻豆精品二区16免费| 手机看片免费在线观看| 国产成人片无码免费视频导航| 91精品国产黑色紧身裤美女| 国自产拍av在线天天不卡 | 国产一级片国产一级毛片| n欧美国产国产综合视频| 亚洲国产人成在线观看69网站| 欧美疯狂三p群体交乱视频| 亚洲国产成人网站| 亚洲第一区二区三区中文字幕| 国产女主播精品大秀系列| 国产最新一区二区三区| 欧美成人不卡视频国产| 欧美在线观看乱妇视频| 肥胖老熟妇Av在线| 国产AV麻豆天堂亚洲国产AV刚| 亚洲最大黄色网址| 国产成人欧美在线免费| 成年人免费黄色不卡电影| 东北熟女高潮一区二区| 国产一级婬片免费播放| 伊人大香线蕉影院| 丝袜高跟黑色丝自慰免费看 | 国产偷窥女洗浴在线观看亚洲| 国产欧美日韩一区综合在线 | 国内精品久久九九久久影院| 不卡av免费在线播放| 区一区二区三区四在线观看浏览| 亚洲福利精品成人| (愛妃)国产精品国产三级国产专播| 特级a级特黄毛片裸体| 9uu有你有我足矣官方| 91久久精品无码专区| 2019久久久高清456| 国产av天堂一区二区三区av女优| 成人网站WWW污污P站| 精品国产三级a在线麻豆| 夜鲁视频在线观看| 久久综合无码人妻系列| 性色av一区二区三区噜噜| 久久免费视频1| 国产在线一二三区| 无码AV片免费不卡在线| 91绿帽人妻国内| 在线亚洲欧美日韩每日更新| 国产在线精品在线观看精品| 久久这里只精品国产免费99热| 国产日产av免费看| 久久狠狠愛亞洲綜合影院| 日韩精品视频无码| 亚洲欧美日韩国产三级| 在线国产成人av| 性视频欧美高清一区中文字幕| 欧美日韩国产日韩在线| a级毛片免费观看网站| 日本理論片在線觀看的 | 亚洲一级大片歡迎光臨| 欲求不满的少妇无码| 久久精品亚洲精品国产区高清| 日本天堂在线一区二区| 在线一区日韩精品人妻| 成人试看30分钟免费视频| 欧洲日本中国三级片| 在线观看无码Aⅴ网站永久免费| 亚洲欧美日韩动漫综合区 | 亚洲欧美精品在线播放| 国产精品无码a v免费| 思思热思思热成人网站| 最近的2019免费中文字幕| 亚洲中字幕日产2021草莓| 久草青青视频网站| 国产成人综合午夜福利| 香蕉视频一级黄片| 欧美无砖专区一中文字幕| 免费A级毛片无码AV蜜芽试| 美女喷水网页在线浏览| 伊综久久久久久绯色AV| 亚洲综合丁香五月| 超碰精品互动交流| 免费在线黄色电影| 午夜成人APP免费观看| 亚洲欧美国产精品| 亚洲欧洲成人AV电影网| 成人欧美一区二区三区白人| 欧美一级爽快片婬片高清免费| 亚洲Aⅴ永久纯肉无码精品| 日韩精品国产福利在线免费观看| 欧美人妻少妇自拍| 中文一午夜乱理片无码 | 港台三级视频二区色多多jizz | 欧美日韩综合另类专区| 日韩欧美AⅤ在线视频| 国产精品日韩欧美亚洲二区| 成年人久久免费小视频互動交流 | 国产午夜免费福利yw自拍| 亚洲 综合 欧美在线| 欧美一级黄片操嫩b喷白浆| 国产深喉口爆吞精视频| 国产特级全黄一级毛片| 国产精品黄在线观看免费软件| 亚洲国产中文精品一区二区手机| 国产人妻人伦精品9| 一区二区三区国产精品国产精黄 | 小说区图片区综合视频区| 在线观看一区日韩电影| 在线观看国产丝袜控网站首页| 国产免费观看视频一区三区五区| 黑人中出人妻无码视频| 国产免费观看18禁止的黄| 精品国产sm在线大全| 99这里只有精品免费观看| 意大利xxxx性hd极品| 久久成人av电影| 欧美一级爽快片婬片高清免费| 欧美日韩国产一区二区三区精品 | 久久亚洲色www.成人欧美 | 国产成人综合午夜福利| 成年女人午夜毛片免费视频| 亚洲国产成人精品无色码| 国自产拍av在线天天不卡| bt天堂国产亚洲欧美在线| 日韩午夜在线观看免费福利| 国产午夜A∨一区二区三区| 久久三级欧美风格| 高清无码一级黄色片国产| 国产精品日日摸夜夜添夜夜添1| 高清不卡亚洲视频| 国产国产精品2020观看| 思思热99re在线精品| 孕妇三片高清在线观看| 亚洲精品乱码久久久久v最新版| 新97在线视频人妻| 极品无码av一区二区| 台湾中文娱乐综合久久久| 久久永久免费人妻精品| 中文字幕乱码中文乱码网站| 三级亚洲综合在线观看| 日韩中文字幕在线播放一区| 国产免费特黄淫乱片| 在线观看亚洲高清国产拍精品| 最新日韩三级片| 欧美日韩第三性综合一区| 曰曰摸天天添天天湿| 日韩久久精品麻豆出品| 国产主播一区二区三区在线播放| 久久国产精品欧| 国产又色又爽又黄在线观看视频| 国产在线精品一区二区三区在线| 在线中文无码成人| 亚洲精品国产免费无码青青草原| 自拍三区爱福利视频一区| 午夜免费福利视频一区| 亚欧洲日本在线观看| 亚洲小说综合图片区| 国产乱色伦影片在线观看下| 仙林踪cosmetology大陆| 久久精品网站av| 九九热99这里只有精品| 国产真实伦对白全集在线| 欧美+日产+国产在线观看 | 国产精品一区二区成人综合| av中文字幕人妻在线| 蜜芽国产在线观看高清无删减| 亚洲三级自拍视频| 韩国成人免费网站| 少妇下面好紧好多水真爽视频| 福利大神国产拍| 新97在线视频人妻| 无收费网站看污在线观看| 成人欧美一区二区三区白人| 有码区一区二区三区| 迈开腿让我看看你的草莓| 日韩美国内动漫中文字幕一级毛片| 亚洲熟妇综合乱一区二区三区| 欧美色大片影片在线看| 丝袜 亚洲 另类 欧美 中文字幕| 免费综合在线观看精品| 另类国产ts人妖高潮视频| 亚洲日韩精品一区二区三区中文| 国产一乱一伦一情| 国产成人女人在线观看| 色婷婷国产成人精品色网视频| 久久国产精品色香蕉91| www.日韩三级在线观看 | 日韩成年午夜免费aⅴ在线观看| 亚洲女同性恋激情网站| 少妇无码少妇AV| 国产TS紫迹丝袜高跟鞋在线| 熟妇无码精品午夜| 黄色免费在线看??| 国产黄色美女毛片| 国产欧美日韩国产第一区| 国产毛片全片在线播放| 黄色片一区二区三区| 女人扒开下面无遮挡| 欧美黑白配啪啪视频| 国内精品久久久久影院桃色| 亚洲va动漫精品一区| 久久国产微拍AV| 国产免费网站看v片在线| 免费?Ⅴ中文字幕无码久久| 久操免费在线视频| 小男生互相脱裤子玩j视频| 情涩网艺术久草色在线久久瑟瑟九十九页| 我的26岁女房客小说| 日韩一区无码高清| 亚洲精品国产免费无码青青草原| 97免费国产一区二区三区| 国产成人精品永久视频| 男生和女生打牌扑克差差差差差| 人妻av在线一区二区| 短篇诱奷h系列小说| 滚床单视频大全叫不停| 黄色软件3.3.0华为下载安装免费| 3d精品动漫在线一区二区三区| AV男人的天堂综合网| 日韩高清中文字幕一区二区 | 无节操摄影部在线观看| 国产一级一片免费播放无码| 国产黑丝在线一区二区三区| 光棍影院免费久久黄网另类三区| 一级毛片完整版免费| 免费全部高h视频无码| 丰满少妇好紧多水视频| 欧美+日产+国产在线观看| 老妇牲交大全视频中文| 农村婬乱男女A片爽视频| 欧美日韩网址在线观看| 无码不卡亚洲成a人片| 一级特黄录像免中文| 又硬又粗进去好爽a片看| 影音先锋中文在线| 亚洲AV片不卡无码久久蜜芽| 极品粉嫩小泬白浆Jk白丝| 自拍偷拍av色网站| 国产激情av在线播放器| 91精品啪国产电影在线观看| 中文字幕免费观看视频| 成人综合亚洲另类| 含羞草是清清爽爽的| 亚洲 美腿 日韩 欧美 精品| 亚洲日韩 偷拍 综合| 中文字幕免费一页日韩精品| 日韩不卡一级毛片免费| 醉酒自拍一二三区| 中国日韩久久网站| 国产AV国片精品JK制服无码| 邪恶网址在线观看免费喷水| 无限资源欧美国产2019| 日产美产偷情一区| 成年男女免费视频网站慢动作| 惠民福利99久久国语露脸精品国产| 韩国av中文字幕二区| 91绿帽人妻国内| 亚洲主播视频在线观看 | 欧美 日韩 色色| 亚洲爆乳精品一区二区| 亚洲三级免费久久| 思思热思思热成人网站| 精品无码成人片一区二区| 国产成人精品午夜福利?v免费| 日韩女人毛片在线| 亚洲AV成人一区二区三区在线播e;| 久久精品国产亚洲?v久| 美女黄网站18禁免费看| 三级亚洲综合在线观看| 吴梦梦梦教练指导学游泳有几季| 亚国产资源网中文最新版| 毛片免费拍拍拍aa视频| 亚洲第一福利区| 亚洲欧美日韩国产中文字幕| 精品人妻一区二区三区人妻| 亚洲欧洲av制服丝袜在线| 久欧美精品免费线视频观看视频| 少妇社区在线播放视频| 欧美性爱网址视频大全| 午夜精品视频任你躁| 精品国产人成亚洲区偷窥| 欧美日韩久久久久免费看| 国产成人亚洲综合无码8| 亚洲乱码精品久久久| 中文丰满岳乱妇中文在线观看| 日本黄 r色 成 人网站免费国产| 成人va视频网站不卡| 国产传媒av福利视频免费| 精品日韩电影无码不卡| 丰满人妻欧美一区| 日本精品网站在线| 欧美老妇大P毛茸葺| 精品无码卡通视频一区二区| 女人18毛片免费a级毛片| 国产精品无码AV永久在线蜜| 91九色丨porny丨制服| 亚洲不卡中文字幕电影院你懂的| 欧美亚洲另类综合| 网友分享中文字幕乱码在线视频网站心得| 日韩少妇下海拍Av| 91精品国产综合久久蜜臀色欲 | 国产特级全黄一级毛片| 国产色产综合色产在线观看视频| 国产在线精品一区一本| 色婷婷aⅴ日韩一区二区三区| bt天堂国产亚洲欧美在线| 午夜肉伦伦影院在线观看| 伊人久久狼人| 97人妻无码成人精品一区二区| 国产无遮挡裸露视频免费| 亚洲AV无码乱码国产麻豆穿越| 国产大胸美女啪啪的样子| 大尺度床震捏胸呻吟视频| 国产精品亚洲精品二区久久| 欧美亚洲黄色一级视频| 精品久久亚洲一级α | 丁香九月婷婷| a级韩国乱理论片在线观看| 91精品国产九九九久久久亚洲| 特级a级特黄毛片裸体| 亚洲18禁Aⅴ无码爆乳自慰网站| 国产日韩欧美一级视频在线观看| 亚洲成线青青电影| 黄页网址大全免费观看视频国产| 国产欧美精品在线免费a| 精品无码成人片一区二区| 啪啪啪精品亚洲| 电影女人喂奶HD电影| 午夜久久狠狠影院| 97公开在线看视频免费| 国产中文一区二区三区| 在线观看黄色国产视频| 嗯啊不要停啊好多水4k8k高清| 美女胸禁止18以下看视频硬看| 欧美日韩一卡2卡3卡4卡国色天香| 国产免费观看视频一区三区五区| 精品国产免费观看一区高清| 久久免费国产精品视频| 手机在线看一级淫片| 色哟哟一区二区三区国产精品| 加勒比五月综合久久伊人| 亚洲不卡中文字幕电影院你懂的 | 日韩视频A∨一区二区三区| 亚洲免费色网视频一区二区| 亚洲国产一区 二区 三区| 黄色a级片视频| 99久久精品免费国产午夜九九| 亚洲日韩精品欧美久久| 精品国产乱码久久久久久蜜坠欲下 | 亚洲男女性高爱潮网站| 午夜在线观看网址入口| 最近的2019免费中文字幕| 亚洲久悠悠色悠在线播放| 亚洲天堂无码在线| 2020亚洲一卡二卡三卡| 亚瑟夜色在线免费视频| 无限资源欧美国产2019| 成人亚洲欧美另类在线视频 | 少妇又紧又黄又粗又爽在线观看| 国产情侣在线视频| 中文字幕精品一区二区无码| 亚洲性爱人操超碰| 亚洲国产精品日韩在线| 亚洲黄色av免费观看| 亚洲国产V高清在线观看综合| 免费的黄色a级毛片| 亚洲字幕中文综合久久| 日韩中文字幕在线播放一区| 自拍偷自拍亚洲精品被多人伦好爽| 国产精品亚洲?V三区| 欧美精品在线不卡一区| 国产精品直播在线观看直播| 日韓歐美精品綜合久久| 国产一极特黄高清免费| 国产黄片精品自拍视频| 亚洲爆乳精品一区二区| 午夜三级精品在线| 国产精品久久久久影院免费| 无码不卡人妻高清| 日本熟妇视频| 丰满的邻居在线观看| 在线中文无码成人| 亚洲黄色av免费观看| 了解最新天堂网www天堂在线网| 97国产在线播放| 女人双腿张开无遮无掩图| 国产一级二级三级三级片| 国产精品偷伦视频播放免费| 狠狠色婷婷综合天天久久丁香| 99久久精品免费看国产一| 日韩午夜在线观看免费福利| 国产成人无码精品免费国产| 在线观看香蕉视频www| 性色av一区二区三区噜噜| 污污免费视频| 少妇裸体淫交视频免费观看| 午夜影视免费在线观看国产片| 欧美日韩在线亚洲国产人国产高清在线精品一区二区三区 | 免费A 级毛片无码A ∨性按摩| 国产高清无码片| 张柏芝54张无删码艳照无码| 美女被中出无套内射视频| 白丝老师张开腿让我爽| 奇米影视亚洲春色麻豆AV| 亚洲欧美日本国产综合| 久久精品人妻一区二区| 香蕉视频黄APP污| 亚洲美日韩Av中文字幕无码久久成人| 欧美日韩国产电影在线| 青青草一区二区免费精品| 国产日韩精品一区在线不卡| 又爽又黄视频免费看| 精品a视频久久久精品久久| 国产手机αⅴ片在线无码| 一二三四视频在线社区3| 久久国产av无码一区二区| 在线午夜福利欧美一区| 一本道不卡dvd高清视频天堂在线中文最新版网址 | 亚洲熟妇中文字幕欧美| 成人美女视频在线播放免费| 免费全部高h视频无码| 欧洲综合自拍亚洲综合图区| 国产高清露脸孕妇系列| 国产乱色伦影片在线观看下| 滚床单视频大全叫不停| 成年女人色直播免费免费高清版| 嫩草伊人久久精品少妇网站| 国产精品高清视亚洲| 特级一级全黄毛片免费下载 | 短篇诱奷h系列小说| 少妇真人直播app| 91日韩美女在线精品播放| 娇妻穿开档内裤陪客户| 在线国语自产一区第二页| 狠狠婷婷色五月中文字幕图片 | 精品天天想夜夜摸无码| 欧美日韩国产电影在线| 一级一级a爰片免费看在线| 日本道高清一区二区三区日本| 一级毛片完整版免费| 國產精品國產三級傳區網站'| 国产亚洲精AA成人网站| 日韓精品視頻一區二區三區| 五月天激激婷婷大综合视频| 国产spa盗摄xo在线观看| 日韩乱码久久久久久| 国产在线视频不卡一区二区| 亚洲在一区二区自拍| 成人黄片在线视频| 亚洲爆乳无码一区二区| 亚洲免费观看视频一区二区| 久久婷婷五月综合色国产.| 日本xxx黄区免费看| 久久狠狠久久综合桃花网址| 日本在线视频中文有码| 午夜久久狠狠影院| 掩去也俺来也久久丁香| 三级亚洲丝袜制服另类色图| 欧美激情视频在线播放全球共享 | 国产污污网站点击进入| 欧美乱人伦精品一区二区| 国产精品色情国产电影| 日韩毛片无码免费久久| 精品久久久久久中文字幕无码专区 | 欧美日韩国产电影在线| 国产尤物tv在线观看| 免费羞羞无遮在线看频频 | 精品国产经典三级在线看| 欧美a级婬片51集| 全黄大全大色全免费大片| 征服好友的保守人妻| 国产一亚洲 国产专区 校园 欧美| 亚洲一卡二2卡3卡| a级毛片无码免费真人一级久久| 亚洲A∨综合色区无码一二三区| 西西gogo午夜高清大胆| 久久精品亚洲精品国产区高清 | 张柏芝54张无删码艳照无码| 欧美成人不卡在线观看视频| 久欧美精品免费线视频观看视频| 久久国产精品波多野结衣| 日本大乳一二三区| 18禁av片免费播放毛片| 久久无码高潮喷水办公室| 日日夜夜精品视频免费| 欧美激情五月丁香综合图片| 久久精品国产亚洲a片高清不卡| 美女胸禁止18以下看视频硬看| 成年无码AⅤ片在线观看国产| 精品人妻无码一区二区色欲αⅤ| 福利大神国产拍| 最新手机av一区二区三区 | 亚洲自拍欧美小说综合| 国产成人av一区二区三区毛片| 护士撩起裙子让我桶的动态图| 春药av一区二区三区四区| 午夜肉伦伦影院在线观看| 一级毛片国产a级毛片8| 亚洲va久久久噜噜噜熟女软件| av网站太在线片多多| 日产美产偷情一区| 人妻偷拍无码中文字幕| NP做的时候有人舔| 亚洲色欲无码一区二区白丝| 午夜视频免费试看| 久久久老年人黄色片| 亚洲日韩av无码久久精品| 91成人免费网址| 免费激情视频网站| 国产AV无码专区亚洲AV极| 欧美日韩在线亚洲国产人国产高清在线精品一区二区三区 | 日日澡夜夜澡人人高潮| 成年人免费看的黄视频| 被公侵犯的岬奈奈美人妻| 99这里只有精品免费观看| 1024精品久久久| 图片区乱熟图片区小说| 综合亚洲欧洲日韩另类| 黄色大片免费网站| xxxxx风流少妇久久久久久| 99尹人香蕉国产免费天天| 日韩视频精品播放| 国产自拍精品视频网站丝袜| 在线看人成视频无遮挡| 日本欧美中文字幕精品一区| 国产精品午夜无码AⅤ无遮挡| 成人av欧美在线观看无码| 久久国产精品色香蕉91| 国产美女午夜区一区二区三区 | 成人av欧美在线观看无码| 国产精品大片免费视频| 人妻制服丝袜步兵在线| 国产啪视频1000部免费不卡| 国产内射小视频在线播放| 国产成人麻豆精品视频色爱| 国产成人加勒比在线观看| 亚洲精品日韩电影中文字幕| 在线电影av观看| 成人久久A片一区无码熟妇| 日韩欧美色影院| 麻豆乱码1区2区新区| 丝袜国语对白刺激| 国产真实伦在线观看| 2023国产精品系列一区二区| 亚洲国产韩国欧美成人| 短篇诱奷h系列小说| 日韩欧美一级精品在线观看| 国产亚洲人成a在线网站| 免费视频在线播放啪| mm131美女大尺度私密照尤果 | 欧美作爱视频在线观看播放| 亚洲毛片不卡a∨在线播放一区| 日本天堂在线一区二区| 高清视频在线观看免费播放| 99久久精品免费精品国产| com成人免费毛片| 可以在线观看的av网站| 亚洲无人区电影高清免费在线看| 久草视频欧美日本在线麻豆| 肥胖老熟妇Av在线| 亚洲18禁Aⅴ无码爆乳自慰网站| 色欲αv蜜臀人妻久精品| 久久精品国产亚洲?v久| 成年人久久免费小视频互動交流 | 久久免费视频1| 美国毛片舔鸡吧视频尤物视频 | 亚州成人高清国产a| 国产亚洲中文日韩欧美综合网| hxcpp研究所实验室网页地址贰佰| 国产www在线完整版播放| 黄片免费观看九一精品| 99国产揄拍国产精品| 人人插人人摸精品在线视频| 天天综合综合| 白丝M字开腿强制呻吟| 国产精品xvideos精品久久香蕉国产线看观看亚洲 | 一级a爱片免播放器免费观看| 亚洲日本第一区另类图片 | 欧美专区 第1页| 久久99国产日韩精品久久99| 打扑克又叫疼免费软件下载| 国产一区二区精品91久久| 第四房色播网| 一区二区在线成人av| yy6080午夜理论影院久久| 天天综合天天干| 在线永久无码不卡av| 免费看黄一区二区| 国产农村妇女一级毛片| 国产精品欧美精品日韩电影| 国产欧美精品在线免费a| 亚洲日韩精品一区二区三区中文| 成人片在线观看永久地址| 亚洲天堂色图图片| 国产免费A∨在线观看不卡蜜臀 | 惠民福利亚洲欧美日韩综合在线播放| 西西gogo午夜高清大胆| 看当前无码专区狠狠躁天天躁| 黑人与人妻精品视频| 毛片免费拍拍拍aa视频| 精品无码一区中文字幕视频| 奶交性视频欧美| 一区二区三区 国产 精品| 99热这里国产精品| 深爱激情人妻中文字幕| 性视频欧美高清一区中文字幕| 久久99精品国产国产精品| 国产精品高清视亚洲| 亚洲主播视频在线观看| 欧美日韩国产电影在线| 国产免费看视频在线| 2020日本高清国产色视频| 日韩无码导航网页| 色护士亚洲精品影院手机版| 我的岳李雪梅全文阅读| 亚洲国产成人精品福利下载| 可以免费在线观看av毛片| 国产在线观看午夜成人| 亚洲国产精品综合久久久麻豆| 国产精品色呦呦在线| 日韩精品久久理片| 精品国产乱码久久久久久蜜坠欲下| 国模冰冰在线视频| 亚洲Av综合永久无码精品天堂| 日本成片免费观看视频在线| 国产免费ā∨片在线观看播放| 国产精品亚洲动态图| 无限资源欧美国产2019| 三级亚洲综合在线观看| 成人爱做视频在线观看| 亚洲国产成人爱AV播放器| 被喂了春药一直做H| 在线国产成人av| 高清秒播免费午夜啪啪网站| 国产www在线完整版播放| 毛片黄色片免费看| 欧美性不卡视频在线观看| chinese中国大学生自拍| 被窝国产理论一二三影院| 亚洲免费永久资源网站| 亚洲综合另类桃花av| 守寡多年的妇岳给了我| 91伊人久久大香线蕉| 啊灬啊灬啊灬快灬深用两性 | 凹凸熟女白浆精品国产91| 国产伊人精品| 中文字幕国产高清无码乱码| 波多野结衣在线播观看| 最新国产美女肝交视频播放| 国产中日韩欧美综合在线| 日本理論片在線觀看的| 中文字幕三级片无码免费| 欧美亚洲日韩每日更新| 亚洲美女在线播放第二页| 亚洲精品日韩电影中文字幕 | 中文字幕无一码在线不卡| 亚洲乱爱视频在线观看| 国产福利刺激视频视频专区| 国产大片在线看| 中文字幕无一码在线不卡| 国产日韩一区二区精品在线播放| 久欧美精品免费线视频观看视频| 亚洲va久久久噜噜噜熟女软件| 精品国产女主播在线观看| 天天操天天操| 黄色视频下载软件| 18 无码国产在线看不卡| 欧美日韩网站一区二区三区| 炮机强制高潮喷水抽搐文| 好紧好爽水真多18p| 日韩电影免费在线观看视频 | 永久免费av无码网站喷水| 亚洲va动漫精品一区| 激情亚洲五月丁香蜜芽| 国产污污网站点击进入| 欧美潮喷在线| 黄色电影毛片在线观看不卡| 国产黄片精品自拍视频| 亚洲s色大片在线观看| 午夜成人18禁一区二区三区| 成人在线播放视频国产| 国产福利在线观看首页| 亚洲国产高清一区二区三区| 久久精品免费大片国产大片| 日韩AV人妻无码HEYZO专区| 亚洲欧美黄色影院| 国产成人精品午夜福利?v免费| 国产精品一区二区哟哟视频| 七次郎在线视频观看| 亚洲天天色网址| 午夜啪啪福利影院| 精品动漫中文字幕一区二区三区 | 国产逼逼视频| 国产激情av在线播放器| 韩国激情喷水高潮视频在线观看| 岛国毛片高清观看在线wy999| 国产制服不卡视频网| 高清不卡亚洲视频| 欧美激情五月丁香综合图片| y1111111少妇影院无码| 色88888久久久久久影院| 国产久久国产精品成人免费| 免费+欧美成人+一区二区三区| 中文字幕免费一页日韩精品| 亚洲伊人深夜福利精品| 日韩无码性爱免费| 亚洲一区成人久久久国产美女胸大| 国产午夜福利免费看不卡| 欧美尤物人妻在线视频| 亚洲精品日韩电影中文字幕| 五月天色网站| 美女成人一区二区三区| 无码少妇三级亚洲| 美国人性欧美XXXX| 国产亚洲91亚洲国产免费| 一本大道香蕉大在线日韩| 国产在线精品一区二区三区在线 | 少妇福利网在线视频| 又污又黄的视频| 长篇乱肉合集乱500| 一区二区三区四区五区亚洲| 波多野结衣AV网站在线播放一二三区| 亚洲日韩av无码久久精品 | 免费A 级毛片无码A ∨性按摩| 日韩毛片无码免费久久| 一级特黄a免费大片| 精品无码αv一区二区三区| 亚洲欧洲日产国码av系列天堂 | 日本91av高潮喷水视频| 高清国产Ⅴa日韩亚洲免费午夜电影| 精品中文字幕av无码不卡| 中文字幕人妻不卡亚洲| 午夜精品久久久久久毛片色欲| 一区二区三区国产精品国产精黄| 欧美亚洲另类综合| 一本久岛一卡| 高清秒播亚洲午夜免费福利视频 | 久久精品国产老熟| 久久久久性色av免费毛片特级亻 | 成人在线观看毛片| 久久伊人高潮影院| 少妇老师寂寞难耐高潮完整版| 色999中文字幕高清| 午夜精品久久久久久毛片色欲| 亚洲精品一线二线三线区别| 人妻AV五月天综合| 中文字幕无码第23页| 国产麻豆乱视频av精油按摩| 欧美激情综合色综合| 最好看的2019中文字幕视频在线 | 国产在线精品一区二区三区在线| 一级一级a爰片免费看在线| 精品日韩电影无码不卡| 亚洲www午色夜在线| 国产主播福利一区二区精品 | 午夜成人18禁一区二区三区| 亚洲国产精选视频在线| NP做的时候有人舔| 日本精品网站在线| 国产51麻豆二区精品av视频| 91精品国产无码高清| 欧美日本韩国亚洲不卡| 亚洲男人色天堂| 狠狠人妻久久久| 污视频三级片在线观看| 亚洲A∨综合色区无码一二三区| 国产成人精品网站在线观| 丁香婷婷激情俺也去俺来也| 一级毛片无码视频| 久久99精品久久久久久园产越南 | 精品国产日韩一区二区在线| 91福利高清在线观看| 高清国产Ⅴa日韩亚洲免费午夜电影 | 高清av电影在线免费观看| 1区2区3区国产精品| 成人色站??久久综合在线视频 | 亚洲欧美中文日韩āⅤ| 亚洲国产中文精品高清一线久久| 公交车拨开丁字裤进入| 无码不卡亚洲成a人片| 最新国产美女肝交视频播放| 无码中文字幕av免费放dvd| 137肉体裸交XXXXX摄影| 无码免费特级毛片| 在线观看免费国产欧美| 不卡的黄片免费看| 成人国产在线24小时播放视频| 麻豆国产自产精品丰满熟妇| 欧美VA日韩VA人妻VA| 国产精品色呦呦在线| 少妇社区在线播放视频| 99在线精品亚洲| 成人av欧美在线观看无码| 精品国产精品久久一区免费式欧美 | 日韩激情一区二区| 午夜男女爽爽爽免费大片| 午夜免费福利视频一区| 可以看黄色的软件| 国产亚洲精品合集久久久久| 国产91精品成人在线观看| HEYZO无码综合国产精蜜臀| 伊人久久大香线蕉精品| 人成网站免费高清网站| 97无码国产精品擁有海量影視資源| 在线视频中文字幕在线一区| 国产大片免费在线观看| 欧美成人先锋影音资源在线| 日日天干夜夜人人添| 国产av一区二区最新精品无删减| 98影院正品A绞毛片免费看| 亚洲精品首页在线播放| 思思热思思热成人网站| 国内精品久久九九久久影院| free性丰满hd性欧美| 日韩专区视频三级色爱综合网| 亚洲色哟哟视频| 国产在线观看码视频| 国产aⅴ无码片毛片一级| 一级一级a爰片免费看在线 | 人人插人人摸精品在线视频 | 亚洲欧洲精品中文在线| 国产精品日韩在线观看免费观看| 国产精品三级av三级av三级| 精品国产三级a在线麻豆| 农村人妻少妇偷人精品视频| 丝袜精品影视| 日韩激情一区二区| 国精品人妻无码一区二区三区性色| 国产成人MV毛毛A片小说| 黄色大片免费网站| 最近的2019免费中文字幕| 性奴折磨变态bdsmchinese| 亚洲日韩黄色| 国产经典 日韩无码| 一本精品99久久精品77| 成在線人永久免費視頻下載| 少妇福利网在线视频| 女人18毛片免费a级毛片| 日韩午夜成人影院| 亚洲精品软件网站下载链接| 国产成人MV毛毛A片小说| 男男女女做爽爽爽视频免费 | 日本边吃奶边摸边做在线视频| 美女大片高清特黄a大片| 国产不卡在线视频一区二区| 国产女主播吞精流白浆一区二区三区| 欧美黑白配啪啪视频| 帅小伙自慰打飞video| 国产三级一区二区三区最新| 成年女人午夜毛片免费视频| 久久vs国产综合色首播| 国产一级婬片免费播放| 日韩欧美一区二区三区精品久久| 在夫面前人妻被欺完整版| 亚洲精品国产免费无码青青草原| 人人玩精品人妻少妇| 囯产免费看黄色视频| 超碰人人精品国产j久久 | 黄色网站视频免费在线观看| 西西gogo午夜高清大胆| 99久久99久久精品国产| 久久香蕉频线观| 日韩成年午夜免费aⅴ在线观看| 久久这里都是精品91| 精品无人乱码一区二区三区三级| 亚洲久悠悠色悠在线播放| 英语课代表趴在桌子上做作业| 少妇看A片偷人精品视频| 日本韩国亚洲精品| 国产大胸美女啪啪的样子| 日韩欧美美国产精品亚洲二区| 亚洲精品国产免费无码青青草原 | yyav在线免费观看| 最好看的2019中文字幕视频在线| 国产精品一线天在线播放| 欧美人妻精品一区二区三区99| 亚洲一区国产美女在线速度快| 国产免费不卡午夜福利在线| 一级特黄a免费大片| 欧美另类在线观看 国产成人精品| 偷偷在线观看免费高清电视剧推荐 | 国产午夜免费福利yw自拍| 欧美激情欧美激情在线| 在线午夜福利欧美一区| 日本免费一区中文字幕黄色| 中文字幕少妇在线三级HD| 欧美成人中文字幕日韩欧美在线观看 | 91精品国产黑色紧身裤美女| 精品国产乱码久久久久久蜜坠欲下 | 欧美同性猛男gayroom| 亚洲日韩乱码中文无码蜜桃| 了解最新五月花亚洲| 国产在线一二三区| 字幕无码一区在线| 一区二区三区无人在线| 午夜成人免费无码a片| 欧美妓人性爱视频在线| 日本综合中文少妇| 久久88色综合色鬼| 国产区一区二久久| 一本道不卡dvd高清视频天堂在线中文最新版网址 | 亚洲?v乱码一区二区三区按摩| 国产欧美日韩精品午夜| 亚洲熟妇熟女久久精品日韩综合 | 免费视频在线观看极品| 香蕉视频你懂的| 亚洲午夜福利院在线观看| AV无码高清不卡| 欧美黑人X高潮猛交看| 深爱激情人妻中文字幕| 性感熟女视频一区二区| 国产亚洲精品久久久久久久久久久动漫| 中文字幕国产精品中文字幕| 国产制服不卡视频网| 国产日韩一区二区精品在线播放| 网友分享中文字幕乱码在线视频网站心得| 無婬黄在线观看网站| 国产成人免费自拍| 亚洲欧美日本国产综合| 国产精品调教打屁股在线播放| 久久国产欧美日韩精品人| 亚洲人成在线天堂| 爽死你个粗暴放荡小淫货在线视频| 免费观看18禁无遮挡真人网站人兽乱伦| 一级国产仑乱| 最近免费中文字幕中文高清6| 天天做夜夜爽| 无收费网站看污在线观看| 局长揉着秘书的双乳在线观看| 亚洲精品ⅴa在线播放| 青青青国产在线观看国产大片| 亚洲国产V高清在线观看综合| 亚洲男女性高爱潮网站| 亚洲精品成a人在线| 欧美高清一区二区黑人粗大| 亚洲天堂女人av| ?V潮喷大喷水系列无码番号| 久久精品黄色一级片| 久久三级欧美风格| 色婷婷aⅴ日韩一区二区三区| 在线一区日韩精品人妻| 国产精品亚洲一区二区动漫| 欧美日韩一区二区髙清视频在线观看| 欧美激情aaaaaaaa片| 欧美毛茸茸在线观看| 欧美久久国产精品让激情| 在线日产观看无码不卡| 自拍偷自拍亞洲精品10P| 国产一本二卡三卡四卡乱码| 精品国产欧美日韩一区二区| 日本成片免费观看视频在线| 白丝老师张开腿让我爽| 欧洲综合自拍亚洲综合图区| 性感熟女视频一区二区| 毛片在线观看永久免费| 午夜精品久久久久久毛片色欲 | 无码孕妇专区一二三| 毛片18女人免费二区| 日韩欧美大片第一区二区| 淫色阁在线视频免费看| 高清秒播免费午夜啪啪网站 | 97国产精品欧美一区二区三区| 一级毛片免费视频网站| 2019年手机中文字幕| 欧美一区二区三区三级电影| 精品h动漫无遮挡在线看中文| 欧美自拍另类欧美综合图| 日本在线a一区视频高清视频| 国产在线观看精品网站| 亚洲熟妇无码爱V在线观看野外| 国产一区二区三区欧美闺蜜双飞| 亚洲v天堂无码在线观看| 国产精品秘入口麻豆| 久久国产微拍AV| 50岁老女人毛片一级亚洲| 日本黄 r色 成 人网站免费国产 | 免费乱码人妻系列有码专区| 国产精品xvideos精品久久香蕉国产线看观看亚洲 | 色哟哟一区二区三区国产精品| 亚洲av成人一区二区三区观看| 少妇下面粉嫩抽搐白浆| 国产精品日韩欧美亚洲二区| 伊人久久大香线蕉综合影院首页 | 国产片av片永久免费观看| 亚洲国产伊人一区| 国产美女喷水出来| 精品推荐国产一级视频| 美女又黄又爽又色的视频| 久久这里只有精品2019| 大尺度床震捏胸呻吟视频| 成人国产在线24小时播放视频| 亚洲性爱人操超碰| 色婷婷aⅴ日韩一区二区三区| 91精品久久久久无码爆乳| 醉酒自拍一二三区| 中文字幕aⅴ天堂在线| 中文字幕久久精品无码av| 黄色麻豆APP下载| 日韩Av一二三区| 欧美日韩国产手机在线观看视频| 久久男人av资源网站| 久久久浪潮牛牛视频免费看| 日韩欧美尤物视频| 人妻丰满熟妇av无码区乱com| 国产免费观看18禁止的黄| 亚洲欧洲一区二区对白最新资讯| 精品午夜久久福利影院| 大肉大捧一进一出的视频| 欧美性不卡视频在线观看| 国产尤物tv在线观看| 国产AV国片精品JK制服无码| 国产精品亚洲一区二区毛片| 亚洲欧美日韩另类精品一区二| 六十路五十路精品久久久久| 亚洲Av无码AV乱码在性观看| 成年av小说网站全部免费| 成人美女免费网站视频免费下载| 国产精品二区综合久久久久久| 综合九九在线免费观看| 国产综合区久久精品久久久| 人妻制服丝袜步兵在线| 啪啪啪精品亚洲| 香蕉视频一级黄片| 国产成人夜色高潮在线观看| 亚洲A V丰满熟妇在线播放| 欧美一区二区午夜福利视频| 黄色片视频久久精品| 中字无码一人妻无码| 国产在线观看码视频| 一级毛片一区二区| 国产成人MV毛毛A片小说| 台湾90后毛片一级| 3d精品动漫在线一区二区三区| 亚洲黄色一区二区在线观看| 久久成人av电影| 精品一区二区三区免费看| 亚洲色图欧美色图日韩| 欧美另类在线观看 国产成人精品 2021中文无码久久精品 | 欧美日韩一区二区髙清视频在线观看| 欧美区2021一二三区在线| 欧美+日产+国产在线观看| 国产一极特黄高清免费| 黄色视频下载软件| 国产精品无码AV永久在线蜜| 少妇无码少妇AV| 亚洲愉拍自拍欧美精品APP| 日韩美国内动漫中文字幕一级毛片| 午夜dj免费视频在线观看| 精品卡1卡2卡三卡免费网站| 亚洲av色香蕉一区6| 夜色aV无码一区二区人妻| 欧美三级精品免费| 精品国产日韩欧美一区二区| 99精品视频在线观看| 伊人久久精品视频| jk制服白丝喷水免费视频| 无码不卡人妻高清| 夜先锋影视资源网| 欧美成人性之站| 精品人妇人妻一区二区| 果冻传媒国产今日推荐| 精品久久久久久97护士| 久久精品二区三区| 中文字幕成人免费高清在线视频| 亚洲综合精品一区二区三区| 无码99久热只有精品视频在线| 国产一级A做片免费网站| 高清无码在线视频| 日本a∨免费一区二区三区| 国产在线观看午夜成人| 高清国产Ⅴa日韩亚洲免费午夜电影| 强波多野结衣juy一507| 国产日一区在线| 免费无码婬片AAAA片榴莲| 精品动漫中文字幕一区二区三区 | 国产不卡在线视频一区二区| 国产精品推荐手机在线| 国产成人大综合在线直播| av777在线观看网站| 国产中文综合字幕日韩国产| 亚洲熟妇熟女久久精品日韩综合 | 隔壁搬来黑人巨大中文字幕| 无码99久热只有精品视频在线| 久久香蕉高清视频| 日韩在线综合| 国产精品无码无需播放器牛牛| 奇米影视亚洲春色麻豆AV| 亚洲a∨手机在线观看不卡| 超级黄色毛片| 了解最新五月花亚洲| 肉色丝袜福利观看一区二区三区| 黄页网址大全免费观看视频国产| 蜜月 国产精品一区二区| 人妻無碼中文字幕| 一区亚洲一区国产| 一二三四日本视频中文| 人妻少妇无码色欲| 老司机免费性爱视频 | 三级亚洲丝袜制服另类色图| 国产成人精品国产亚洲一区二| 婷婷丁香激情综合| 在线日韩αv永久免费观看| FREE性中国丰满护士| 一本久岛一卡| 在线国语自产一区第二页| 久久人妻少妇嫩草?V无码专区| 不卡在线视频中文字幕| 欧美作爱视频在线观看播放| 欧美日韩一卡2卡3卡4卡国色天香 日韩在线观看片免费人成视频 | 成人黄色av网址| 99热这里国产精品| 99在线精品播放视频| 国产精品嫩模久久| 亚洲av无码之国产精品网址蜜芽| 一本精品99久久精品77| 91无码红桃一区二区三区| 小黄鸭APP视频网站| 黄色软件3.3.0华为下载安装免费| 久久精品国产www456c0m| 日韩欧美一区二区三区精品久久| 久久这里只精品国产免费99热| 婷婷五月综合色中文字幕蜜| 精品伊人久久大香线蕉男人的天堂| 欧美熟妇性饥渴在线观看| 午夜精品视频任你躁| 美女黄频视频免费国产大全| 亚洲av免费高清在线观看| 国产中文亚洲高清| 99亚偷拍自图区亚洲潮喷| 三级日韩综合AⅤ一区二区三区免费不卡 | 99久久99久久精品国产| 国产特级全黄一级毛片| 网友分享中文字幕乱码在线视频网站心得 | 囯产亚州中文字幕美日韩在线| 国内精品久久九九久久影院| 欧美亚洲日韩每日更新| 免费观看mv入口在线看| 亚洲无码久久狠狠| 日本免费久久| 国产三级一区十级真人片| 日韩怡红院精品久久久久| 国产一级成人片在线观看| 黄色小电影在线观看| 久久精品aⅴ视频| 久久三级欧美风格| 无码人妻h动漫中文字幕| 亚洲人成人无码网WW| 亚洲āv永久无码精品天堂久久| 国产免费看视频在线| 91d大神在线观看| 在线A毛片免费视频观| 18禁嗯啊嗯网站亚洲色图自拍AV | 亚洲欧洲av制服丝袜在线| 中文字幕日韩免费视频看网站大全 | 成人国产一区二区三区在线观看| 99久久精品免费精品国产| 亚洲欧洲一区二区对白最新资讯| 亚洲国产成人一级| 亚州A√精品一区二区小说| 字幕在线免费网站| 18 无码国产在线看不卡| 最近中文字幕在线 一区二区三区| 午夜影视在线观看免费不卡| 欧美极品金发尤物大战黑人| 日韩偷拍Av第一页| 日本特黄特色aa大片免费| 午夜精品视频任你躁| 精品国产人人精品国产人人| 国产揉搓极品美女97| 日韩无套乱97超碰在线播放| 亚洲999精品视频免费观看| 日本H纯肉无遮掩3D动漫在线观| 国产成人高清亚洲一区图片| 国产色网视频中文字幕| 岛国欧美日韩一二三四区| 现代精品中文字幕在线| 日韩性一区二区三区| 久久麻豆国产经典| 精品免费视频91蜜桃不卡| 在线a级毛片96在线| 成人黄色av网址| 国产97精品v片在线观看不卡| 国产av天堂一区二区三区av女优 | 日韩精品电影大全热搜电影在线观看全集免费 | 一区二区三区精品无码免费在线| 欧美日韩偷拍一区| 丝袜国语对白刺激| 寂寞少妇啊轻点灬太粗太长了视频| 老司机免费性爱视频| 日韩精品午夜av在线播放。| 午夜成人APP免费观看| 日本大乳一二三区| 国产小屁孩草大人| 人妻出轨不卡中文字幕97| 现代精品中文字幕在线| 久久99精品久久久久久园产越南 | 中文字幕一级无码| 又黄又爽又猛的视频| 99精产国品一二三产区MBA| 扒开双腿疯狂进出爽爽爽动态图| 欧美精品在线不卡一区| 天天影视香欲综合视频| 久久这里只精品国产免费99热6| 一级伦奷视频在线观看| 天堂网亚洲av制服丝袜| 欧美一级高清A片费观看| 一级丰满少妇无码激情喷射| 日本免费一区二区三区手机在线| 麻豆乱码1区2区新区| 不卡av一区二区三区无码| 天天色天天插| 亚洲日韩精品欧美久久| 精品国产一区二区三区广区hd | 国产精品黄片免费视频| 久艹精品综合伊人| 国产51麻豆二区精品av视频| 国产剧情AV不卡在线观看| 亚洲av色香蕉一区6| bt天堂国产亚洲欧美在线| 窝窝午夜人体视频| 久久久浪潮牛牛视频免费看| 欧美毛茸茸在线观看| 狠狠婷婷色五月中文字幕图片| 亚洲熟妇熟女久久精品日韩综合| 黄色一纹毛片网站| 国产美女午夜区一区二区三区| AV无码高清不卡| 精品人妻一区二区香蕉| 小黄鸭APP视频网站| 一级一级a爰片免费看在线| 欧美潮喷在线| 无码一区二区视频在线观看免费 | yellow动漫高清在线观看免费| 成人综合久久| 国产vps毛片擁有海量影視資源| 国产色产综合色产在线观看视频 | 性视频欧美高清一区中文字幕| 2021亚洲中文字幕| 小男生互相脱裤子玩j视频| 午夜三级精品在线| 最好看的2019中文字幕视频在线 | 午夜视频网站亚洲国产| 国产探主播在线观看| 人妖系列在线精品视频| 亚洲日本系列在线看| 国产在线不卡一区无码视频| 又污又黄又无遮挡的网站| 学校停电被同桌c了3次| 十八禁水多多喷水高潮| 亚洲欧洲av制服丝袜在线| 99精品国产精品亚洲一级毛片| 欧美日韩精品激情福利综合| 國產V亞洲V歐美V專區| 蜜臀成人AV在线| 精品人妇人妻一区二区| 美女黄色网址| 亚洲欧美国产精品| 大香区一二三四区2021| 精品久久久久久97护士| 国产spa盗摄xo在线观看| 公喝错春药让我高潮| 精品成人乱色一区二区免费| 被喂了春药一直做H| 蜜汁AV无码国产| 亚洲欧美黄色影院| 婷久久网站国产精品9久久| 在线观看国产丝袜控网站首页| 无限资源欧美国产2019| 無碼人妻精品一區二區三18禁| 亚洲欧美日韩动漫综合区| 亚洲精品欧美性爱| 歐美日韓字幕二區| 精品卡一卡二乱码新区| 亚洲国产成人精品无色码| 黑人60厘米全进去了| 99久久99久久精品国产| 久艹精品综合伊人| 日本人善交69xxx| 亚洲av无码av制服丝袜在线| 欧美性色黄大片性欧美| 国产精品久久久久影院免费| 一二三四视频在线社区3| 免费 无码 国产裸体| 偷拍区图片区小说区激情| 久久久亚洲日韩大片午夜| 午夜成人APP免费观看| 欧美激情视频在线播放全球共享 | 日日天干夜夜人人添| 成人av无码高清在线二区| 国产精品久久久久久男贼秘图 | 一级毛片无码视频| 精品亚洲永久免费精品动漫| 一本之道高清乱码久久久| 五月天在线免费视频| 一女多男np高辣文h| 国产一级二级三级三级片| 亚欧免费无码?ⅴ在线观看| 欧美日本韩国亚洲不卡| 国产成人无码精品免费国产| 人妻少妇乱子伦精品无码专区毛片| 国产精品大片免费视频| 国产又大又粗又长又猛| 99re6热精品视频在线观看| 果冻传媒国产传媒| 亚洲AV无码乱码国产麻豆重| 思思热99re在线精品| 情欲一区二区三区在线变态| 日韩少妇一区二区视频| 国产成人无码??精品一区| 肉丝高跟白领国产在线观看| 好满射太多了装不下了APP下载| 羞羞的视频一区二区三区| 久久视频亚洲日韩| 91精品国产91久久久久97| 亚洲v欧美v日韩v中文字幕| 欧洲j片免费在线视频| 天堂网亚洲av制服丝袜 | 国产精品日韩高清在线蜜芽| 女女百合网站AV| 国模私拍国产精品久久| 麻豆免费视频在线观看明星AI| 欧美激情片在线观看| 少妇又紧又黄又粗又爽在线观看| 偷窥中国隐私xxxx| 全黄大全大色全免费大片| 国产精品色情国产电影| 亚洲成人黄色在线观看| 无节操摄影部在线观看| 风流少妇被粗大爽ⅹxoo视频| 手机看片福利永久| 欧美日韩国产中文字幕韩国理论软件 | 17c在线精品无码秘入口九色| 2019久久久高清456| 1024精品久久久| 一本大道无码在线| 奇米影视亚洲春色麻豆AV| 亚洲一区二区三区中文字幕不卡视频| 色婷婷极品视频| 成人爱做视频在线观看 | 亚洲AV成人一区二区三区在线播e;| 天天槽天天槽天天槽| 你懂得在线视频| 最新手机av一区二区三区| 开心五月亚洲综合| 精品深夜av无码一区二区| 九月婷婷综合中文字幕| 日本免费永久不卡| 七次郎在线视频观看| 欧美妓人性爱视频在线| 国产成人精品网站在线观| 日韩AⅤ无码一区二区三区| 久操碰操碰操碰操碰| 中文字幕视频一区二区在线| 97国产在线播放| 国产日产人妻精品精品| 五月月色开心婷婷久久合| 影音先锋中文在线| 色妞精品AV一区二区三区| 亚洲欧洲日产国产AV无码| 日本女人一级视频在线观看| 国产黄片一级成人看| 久久久er热这里只有精品2| 国产色综合这些精品| 精品久久久久久97护士| 国产亚洲精品亚我不卡电影院| 性色av一区二区三区噜噜| 久久久久亚洲精品中文| 无码孕妇专区一二三| 国产成人无码??精品一区| 欧美成人午夜视频在线网站| 午夜成人18禁一区二区三区| 免费乱码人妻系无呜专区| 日韩专区视频三级色爱综合网| 久久久久久91亚洲精品综合| 嗯啊不要停啊好多水4k8k高清| 美女视频在线观看网址| 亚洲av无码成人毛片一级不卡| 国产精品日韩欧美亚洲二区| 日韩女人毛片在线| 亚洲欧美一区二区成人片片片| 欧美成人中文字幕日韩欧美在线观看 | 免费A级毛片无码AV蜜芽试| 免费一级黄色录像片免费 | 午夜拍拍福利视频蜜桃视频| 精品国产精品久久一区免费式欧美| 秋霞电影院午夜无码免费视频| 一区二区自拍视频| 99这里只有精品免费观看| 成人午夜无码一区二区| 亚洲男人色天堂| 亚洲欧美国产日本在线视频| 日韩中文字幕四季毛片| 全部免费的美女视频批| 亚州无码偷拍| 免费国产黄网站在线观看播放不卡| 国产精品碰碰人人a久久| 九九综合九九| 国产午夜免费福利yw自拍| 免费在线看污| 粗大公么中文字幕| 永久地址网址亚洲国产| 粉嫩小泬无套白浆流出| 无码99久热只有精品视频在线| 国产综合欧美女同| 中文字幕日韩免费视频看网站大全 | 美女被中出无套内射视频| 精品午夜久久福利影院| 理论电影在线观看| 亚洲免费在线观看?V| 校园春色 欧美| 欧美一级高清A片费观看| 无码一本一道久久| 国产午夜福利免费看不卡| 国产午夜无码片在线观| 91福利高清在线观看| 欧美亚欧在线视频| 亚洲欧美在线视频第一页| 国产精品爽爽v在线观看无码免费| 久久熟女一区二区三区| 91精品在线观看国产线免费| 中字无码一人妻无码| 全国男人天堂网| 丁香综合婷婷在线网站| 91丝袜高跟在线观看| 小黄鸭APP视频网站| 午夜免费啪视频在线男女| 亚洲av无码成人毛片一级不卡| 欧美日韩网址在线观看| 91青青视频在线播放| 东京热无码AⅤ一区二区| 黄色麻豆APP下载| 成人3D无遮H动漫| 久久精品国产亚洲美女| 正在播放懂色av| 欧美韩国日本国产一区二区| 欧美性爱啪啪新网| 久久免精品一区二区| 亚洲日本vA中文字幕久久农民工| 国产日一区在线| 国产中日韩欧美综合在线| 久久久亚洲日韩大片午夜| 人妻少妇精品无码专区久久| 91精品在线观看国产线免费| 欧美日韩网站一区二区三区 | 国产成人精品网站在线观| 免费看的www哔哩哔哩| 国产日韩欧美一级视频在线观看| 亚洲永久精品一区免| 国产一本二卡三卡四卡乱码| 美女网站色在线观看| 七月丁香色婷婷综合激情| 欧美日本韩国亚洲不卡| 日韩三极电影在线| 亚洲欧洲精品中文在线| 欧洲午夜无码久久久久人妖| 偷偷在线观看免费高清电视剧推荐 | 国产传媒av福利视频免费| 亚洲男女性高爱潮网站| 亚洲精品ⅴa在线播放| 污视频免费久久免费| 国产色欲色欲www在线丝瓜| 国产HDVA成人资源| 日韩AV有码精品高清免费看| 天堂网亚洲av制服丝袜| 野花香高清视频在线播放观看| 妓女av流畅不卡顿在线观看| 性色AV一区二区三区夜夜嗨中文字幕大看蕉永久网 | 国产成人一区二区三区现时观看| 亚洲男同视频网站| 怮交小u女天堂视频看看| 偷自拍亚洲欧美一区精品| 中文字幕一精品亚洲无线一区| 粉嫩粉嫩的虎白女18在线软件| 国产AV熟女一区二区三区小说| 惠民福利欧美性欧美巨大黑白大战| 成年男女免费视频网站慢动作| 日韩欧美尤物视频| 欧美亚洲另类综合| 日韩极品一区二区白白色在线国产视 | 国产精品色呦呦在线| 综合亚洲国产成人| 黑人60厘米全进去了| com成人免费毛片| 國產精品國產三級傳區網站' | 亚洲免费在线观看?V| 国产综合区久久精品久久久| 国产免费午夜视频在线播放| 亚洲欧美黄色影院| 日韩精品中文字幕网| 九一九色国产| 国产在线观看码视频| 1区2区3区国产精品| 国产免费A∨在线观看不卡蜜臀| 毛片网站免费在线免费| 更新每日日日夜夜| 无码国产成人国产在线观看 | 欧美多级黄片免费观看 | 婷久久网站国产精品9久久| 成 人 网 站不卡在线观看| 国内老熟妇对白xxxxhd| 精品国产成人在线看| 日韩特黄精品视频免费在线看 | 69色最新在线视频| 一区二区三区日韩电影| 女人被爽到叫的视频免费| 日本中文视频不卡v二区| 午夜男女爽爽爽免费大片| 毛片免费拍拍拍aa视频| 国产欧美精品在线免费a| 国语嫖妓对白在线视频| 2019久久久高清456| 羞羞色院91精品网站免费| 日本国产美国欧洲视频| 超碰精品互动交流| 一级国产仑乱| 午夜影视在线观看免费不卡| 亚洲精品日韩电影中文字幕| 午夜成人APP免费观看| 色婷婷在线无码精品秘人口传媒 | 成人不卡国产福利电影在线看| 国产av一区二区三区不卡| 日韩欧美视频二区在线视频| 西西gogo午夜高清大胆| 91绿帽人妻国内| 精品少妇亚洲乱码| 人妻少妇精品无码专区久久| 一区二区三区高清在线播放| 激情啪啪精品一区二区| 久久久国产精品国产| 91久久丁香狠狠色婷婷综合| 97超碰在线网站| 日韩欧美亚洲综合| 国产精品线在线精品| 狠狠色婷婷综合天天久久丁香| 色护士亚洲精品影院手机版| 欧美 国产 中文 高清| 97精品一区国产高清在线gif| 新97在线视频人妻| y1111111少妇影院无码| 日本黄视频在线播放| yy6080一级毛片高清| 欧美激情视频在线播放全球共享| 99久久国产一区区≡区| 国产香蕉97碰碰久久人人片源丰富 | 2019久久久高清456| 1区2区3区国产精品| 精品中文字幕av无码不卡| 伊人久久精品视频| 禁忌3与子亂倫一级A片| 亚州一区二区三区四区视频| 91精品久久久久无码爆乳| 日韩成年午夜免费aⅴ在线观看| 在线日韩αv永久免费观看| 激情综合婷婷丁香六月花| 国产高清无码片| 亚洲aⅴ韩国av综合久久久| 制服丝袜中文字幕丰满人妻| 色欧美片视频在线观看| 国产免费看视频在线| 蜜桃视频黄片| 国产中日韩欧美综合在线| 奶交性视频欧美| 亚洲色欲色欲www474ee等| 在线观看无码免费视频网址| 美女福利在线| 亚洲自拍欧美小说综合 | 丰满老熟好大bbb视频| 国产精品线在线精品| 欧美v日韩v亚洲v最新在欧美大片 国产高清在线播放免费观看 | 91高素质城中村在线观看| 国产综合视频在线观看一区| 亚洲天天色网址| 免费在线看污| 可以直接观看的无码Av毛片| 国产精品无码a v免费| 成人在线播放视频国产| 久久免费黄片视频| 九九福利国产精品日韩精品| 一本久久免费视频| 久久狠狠久久综合桃花网址| 国产一区二区三区20p| 国产午夜无码片在线观| 精品一区二区三区毛卡片| 亚洲欧洲大黄片| 亚瑟夜色在线免费视频| 午夜啪啪福利影院| 精品国产另类AⅤ一区二区| 国产成人大综合在线直播| 久久香蕉频线观| 局长揉着秘书的双乳在线观看| 欧美日韩特黄特色大片免费观看视频| 一级毛片国产a级毛片8| 国产亚洲91亚洲国产免费| 一级成人毛片免费观看| 国内精品久久九九久久影院| 三级久久精品国产电影| 亚洲综合欧美日本另类激情 | 國產在線看片無碼人精品| 精品国产人人精品国产人人| 国产主播一区二区三区在线播放| 久久亚洲国产高清观看| 亚洲男同视频网站| 青青青青久在线视频免费2019| 欧美中文字幕在线视频区| 国产福利写真片视频在线| 在线国语自产一区第二页| 亚洲妇乱亚洲妇乱无码| 长篇乱肉合集乱500| 久久天天躁夜夜躁狠狠d| 国产精华Aⅴ午夜在线观看 | 亚洲国产精选视频在线| 欧美日韩精品乱国产欧美v日韩v亚洲 | 亚洲成人三级| gogo无码国模私拍| 亚洲午夜高清无码| 最新日韩三级片| 精品性色国产国产亚洲美乳制服| 亚洲综合激情中文字幕乱码| 久久影院免费视频| 天天操天天操| 国产片av片永久免费观看| 欧美黑白配啪啪视频| 亚洲日本视频| 欧美国产在线观看中文| 亚洲天天色网址| 囯产亚州中文字幕美日韩在线| 午夜亚洲国产理论飘花中文| 青草青草久视频免费观看欧| 日韩V欧美V中文在线| 亚洲开心中文字幕| 色妺妺在线视频喷水| 激情啪啪精品一区二区| 成年人免费黄色不卡电影| 少妇裸体淫交视频免费观看| 欧美亚洲日韩每日更新| 了解最新天堂网www天堂在线网| 日韩av无码不卡| 波多野结衣一区二区观看| 粉嫩XXXX小馒头一线天| 超级黄色毛片| 亚洲精品日韩免费av| 欧美激情在线视频一区| 波多野结衣AV网站在线播放一二三区| 99精品国产综合久久精品自在 | 亚洲一卡二卡3卡四卡2022无码在线观看 | 久久伊人高潮影院| 高清视频在线观看免费播放| 小日本色a导航婷婷色播综合在线| 国产高潮白浆免费二区三区| 淫色阁在线视频免费看| 精品国产内射美女自拍自在线| 无码午夜电影大全动画电影在线观看免费高清全集 | 韩国激情喷水高潮视频在线观看| 99精产国品一二三产区MBA | 国产免费A∨在线观看不卡蜜臀 | 亚洲熟妇中文字幕欧美| 日本天堂在线一区二区| 精品无码成人网站久久久久久| 欧美成人午夜视频在线网站| 日韩综合成人在线| 麻花豆传媒剧国产小视频| 99精品国产综合久久精品自在 | 国产在线观看你懂的网站| 亚洲一区二区三区高清在线看| 上课别穿内裤方便我c电视剧| 日韩在线中文字幕有码在线| 免费无国产suv精品一区二区6| 久久精品国产亚洲av色欲| 国产免费一区二区日日骚| 国产免费?级成人片在线观看| 久久精品aⅴ视频| 91麻豆精品个人在线| 色妞精品AV一区二区三区| 高潮富婆一区二区三区99| 国产自制一区在线观看 | 国产精品99久久久久久人妓女| 极品熟妇视频免费看| 巜少妇的滋味2做爰| 男人天堂av东京热| 丝袜 亚洲 另类 欧美 中文字幕| 在线一区日韩精品人妻 | 台湾90后毛片一级| 醉酒自拍一二三区| 久久久老年人黄色片| 国产成人一区二区三区现时观看| 欧美日韩在线亚洲国产人国产高清在线精品一区二区三区 | 欧美日韩一区二区三区在线播放| 天堂网亚洲av制服丝袜| 9uu有你有我足矣官方| 日本在线观看免费高清| 国产精品民宅偷窥盗摄| 免费国自产拍精品| 办公室紧身裙丝袜AV在线| 三级片免费一区二区| 婷婷国产精品久久| 国产在线精品在线观看精品 | 无码日韩免费视频一区二区二区| 国产精品无码AⅤ天天爽麻豆| 天码人妻一区二区三区| 情欲一区二区三区在线变态| 七月丁香色婷婷综合激情| 在线A毛片免费视频观| 美女成人一区二区三区| 国产女人高跟丝袜中文字幕| 精品亚洲成?人在线观看| 久久99国产日韩精品久久99 | 亚洲日韩国产AV无码五码精品 | 亚洲精品欧美性爱| 国产成人av一区二区三区毛片| 小黄鸭APP视频网站| 4438ⅹ亚洲全国最大成| 俺去鲁婷婷六月色综合| 69色最新在线视频| 久久一本av观看| 国产在线观看A v在线| 嫩模自慰无码一区二区三区动漫| free性丰满hd性欧美| 亚洲男女性高爱潮网站| 国产乱辈通奷免费视频| 国产午夜A∨一区二区三区| 成人性午夜免费视频网站| 精品国产成人在线看| 亚洲少妇日本综合| 91哺乳期毛片国产电影| 沈教授别c我1v1高H| 国产午夜欧美忘忧草| 久久国产午夜| 午夜三级精品在线| 含羞草实验研究所入口免费网站新闻 | 日韩欧美精品久久一二区| 99r少妇极品熟妇人妻无码| 黄片一级免费视频观看大全| 国产在线成人91| 亚洲欧美黄色影院| 巨臀人妻中出中文字幕在线| 国产av一区二区三区不卡| 国产精品久久久久无码av一| 国产手机αⅴ片在线无码| 精品国产乱码久久久久久蜜坠欲下| 亚洲999精品视频免费观看| 欧美国产在线观看中文| 不卡一二区国产精品色哟哟| 麻豆乱码1区2区新区| 亚洲另类中文字幕| 久久麻豆国产经典| 操女人逼网站| 中文字幕人妻不卡亚洲| 国产成人MV毛毛A片小说| 美女黄色网址| 精品伊人久久大香线蕉男人的天堂 | 人妻丰满āⅴ无码中文字幕| 免费A 级毛片无码A ∨性按摩| 波多野结衣无码在线观看| 西西gogo午夜高清大胆| 欧美成人精品大片免费流量| 国产免费观看视频一区三区五区 | 青青视频三级片97色色| 字幕无码一区在线| 熟妇熟女HDⅩXX视频无毒不卡| 少妇裸体淫交视频免费观看| 最近的2019免费中文字幕| 日韩午夜成人影院| 热久久视久久精品人妖| 欧美一区二区三区三级电影| 国产福利在线观看首页| 成 人 H动 漫在线播放日本| 岛国精品视频免费一区| 午夜影视免费在线观看国产片| 国产区 日韩区 经验| 好深好爽使劲我还要在线观看 | 迈开腿让我看看你的草莓| 成人午夜无码一区二区| 91全程露脸熟妇在线| 日本高清线视频在线| 日韩精品在线一区丝袜| 射精专区一区二区朝鲜| 国产亚洲欧美在线一区二区三区| 色欲香天天天综合网站无码| 国产精品日韩欧美亚洲二区| av在线不卡高清无码播放| 今天高清视频免费播放| 成人av欧美在线观看无码| 极品熟妇视频免费看| 91精品在线观看国产线免费| 无码a级毛片免费中文字| 粉色视频在线观看下载| 免费的黄色a级毛片| 亚洲国产伊人一区| 欧美日产幕乱码久久久| 一二三四日本视频中文| 精品久久亚洲一级α | 麻豆免费视频在线观看明星AI| 日本一区欧美国产日韩| 黄色三级网站美女| 不卡av一区二区三区无码| 亞洲另類精品綜合| 国产午夜精品久久久久精品电影| 欧美精品爽爽影院在线播放| 大尺度无遮挡激烈床震网站| 国产欧美精品在线免费a| 天天综合天天干| 亚洲欧美日韩国产中文字幕| 九九热99这里只有精品| 巨人黑人极品videos精品| 精品无码卡通视频一区二区| 亚洲国产熟女| 亚洲精品国产av网| 婷婷丁香五月天亚洲第一免费视频| a天堂最指中文在线下载| 午夜dj免费视频在线观看| 日本一区欧美国产日韩| 农村人妻少妇偷人精品视频| 男性GAY无套国产 免费软件| 99热在这里只有免费精品| 日本天堂一本线免费观看| 久久人妻少妇嫩草?V无码专区| 亚洲精品露脸无码在线视频| 日韩欧美AⅤ在线视频| 日产美产偷情一区| h无码精品3d动漫在线观看| 午夜在线观看短视频| 18禁拍拍拍漫画全彩| 人妻丰满熟妇av无码区乱com| 欧美日韩国产日韩在线| 91成人免费网址| 羞羞午夜男女爽爽视频| 国产大学生自拍视频| 美洲亚洲精品高清视| 三级黄色一级视频| 无码中字毛片日韩a| 在线日本精品a免费播放| 尤物一区二区三区在线观看| 超级黄色毛片| 大尺度床震捏胸呻吟视频| 97资源中文字幕| 精品无码αv一区二区三区 | 国产草草影院免费观看| 欧美老妇大P毛茸葺| 又粗又硬的男女免费视频| 青青草一区二区免费精品| 国产精品va一区二区三区| 男人天堂av东京热| 亚洲精品日韩欧美国产| 久久免精品一区二区| jk制服白丝喷水免费视频| 婷婷丁香激情综合| 亚洲中文日本道在线观看| 国产一级做a爰片久久毛片野外| 好深好爽使劲我还要在线观看| 含羞草一卡2卡3卡4卡| 一二三四日本视频中文| 中文字幕乱码中文乱码网站| 四虎影视永久在线观看精品免费| 五月丁香婷婷在线观看| 在线观看一区日韩电影| 99精品国产精品亚洲一级毛片| 日日摸夜夜添夜夜添中文字幕| ?V潮喷大喷水系列无码番号| 欧美亚洲日韩每日更新| 羞羞色院91精品网站免费| a天堂最指中文在线下载| 高清中文国产日韩欧美二视频| 亚洲免费观看视频一区二区| 在线视频中文字幕在线一区| 正在播放白嫩的漂亮小美女| 国产精品亚洲αv综合成久久| 正在播放白嫩的漂亮小美女| 蜜桃臀无码AV在线观看| 精品无码成人网站久久久久久| 久草青青视频网站| 一区二区三区国产精品国产精黄| 国产精品久久久久无码av一 | a级毛片免费观看网站| 欧美日韩少妇一区二区久久久免费 | 夜先锋影视资源网| 拔插在线视频| 精品国产乱子伦高清免费| 国产AV熟女一区二区三区小说| 乱码视频午夜在线观看| 尤物一区二区三区在线观看| 精品国产人成亚洲区偷窥| 激情图片乱伦视频DVD| 亚洲综合国产在不卡在线| 日本理論片在線觀看的| 精品国产3p在线观看| 久久国产大片| 自拍偷自拍亞洲精品10P| 無碼人妻精品一區二區三18禁| 久久精品国产亚洲av色欲| 国产欧美日韩精品一二三区| 黄色免费在线看??| 免费看片日本| 最近中文字幕mv在线| 少妇极品熟妇人妻无码| 欧美成人不卡在线观看视频| 国产亚洲精品一区在线播放| 色婷婷极品视频| 日日摸夜夜添精品视频| 在线国语自产一区第二页| 国产揉搓极品美女97 | 自拍视频对白精品| 一本精品99久久精品77| 福利一区二区福利刺激微拍| 天天曰天天日天天干天天干天天射 | 91人人操人人操| 亚洲免费色网视频一区二区| 久久福利导航网站| 欧美性不卡视频在线观看| 无码十高潮十在线av99网站| av人人揉揉资源站免费| 欧美寡妇性猛交xxx无码| 波多野结衣久久一区二区| 精品无码成人网站久久久久久| 伊人久久成久久影院| 一个本道久久综合久久88中文字幕| 歐美日韓字幕二區| 亚洲一区视频免费观看| 东北熟女高潮一区二区| 亚洲AV无码乱码国产麻豆重 | 精品久久久久久中文字幕无码专区| 欧美性猛交ⅹxxx乱大交69| 夜夜嗨av一区二区三区| 夜夜香夜夜摸夜夜清添| 亚洲三级在线欧美三级| 欧美在线精品自拍| 1区2区3区国产精品| 久久国产av无码一区二区| 亚洲欧洲日产综合野草| 校花高潮喷水视频| 欧美理论精品一区二区| 欧美老妇大P毛茸葺| 好紧好爽水真多18p| 精品免费视频91蜜桃不卡| 久久福利导航网站| 美女脱内衣内裤露全身| 亚洲极美女高清在线观看av| 精品国产乱码久久久久久蜜坠欲下| 亚洲AⅤ片在线观看| 99欧美视频一区二区国产| 久久久久亚洲精品中文| 成人试看30分钟免费视频| 七月丁香色婷婷综合激情 | 久久精品国产www456c0m| 国产www在线完整版播放| 少妇久久被弄到高潮| 国产一级二级三级三级片| 美女裸身裸乳无遮挡网站| 毛片18女人免费二区| 免费综合在线观看精品| 国产精品尤物| 2020亚洲一卡二卡三卡| 久久精品国产www456c0m| 泄欲网站免费观看| 2022AV无码视频在线播放| 国产最新一区二区三区| 18 无码国产在线看不卡| av毛片特级无码的a级毛片持黄| 日本在线视频中文有码| HY久久精品国产亚洲AV天美18 | 少妇系列一区二区| 果冻传媒国产今日推荐| 国产精品久久久久久久午夜| 久久亚洲色www.成人欧美 | 亚洲国产精品综合久久久麻豆| 亚洲专区第三页| 免费乱码人妻系列有码专区 | 国产综合视频在线观看一区| 国产主播福利一区二区精品| 国产亚洲欧美在线一区二区三区| 国产高清在线精品一区二区成人| 三级亚洲综合在线观看| 国产亚洲精品久久久久久久久久久动漫 | 美女露出奶头秘无遮挡免费| 日本一线和三线的区别是什么| 日韩AV福利片在线| 一级特黄a免费大片| 综合九九在线免费观看| 亚洲午夜福利院在线观看| 泄欲网站免费观看| 综合亚洲欧洲日韩另类| 国产色综合这些精品| 国产免费电影久久| 精品久久久久久中文字幕无码专区 | 麻豆日韩区久久综合| 国产精品成年人网站在线观看| 男人天堂你懂的| 国产一区二区三区丶四区| 欧美多人换爱交换乱理伦片 | 国产黄色电影一区二区不卡| 日本人妻中文字幕久久一区| 亚洲欧洲日产国码av系列天堂 | 无人高清视频免费观看在线| 果冻传媒国产传媒| 91亚洲欧美综合高清在线| 精品国产AⅤ一区天美传媒| xxxxx风流少妇久久久久久| 日韩欧美尤物视频| 美国毛片舔鸡吧视频尤物视频 | JIZZJIZZ少妇亚洲水多| 免费卡二卡三卡四卡| 成人MV射精无打码视频| 美国人性欧美XXXX| 日本精品 久久久| 级中文无在线日本视频| 亚洲欧洲日产综合野草| 一区二区三区人妻系列| 无码精品日韩专区久久| 亚洲免费观看视频一区二区| 咪咪爱中文字幕| 成年人免费看的黄视频| 无码国产色欲xxxxx视频软件| 色视色视影院色视影厍色视网| 国产色欲?V一区二区三区| 影音先锋se色色| 国产成人aa免费视频| 无码人妻少妇色欲AV一区二区| 在线观看无码∧V| 国产传媒av福利视频免费| 国产精品黄在线观看免费软件| 国产av天堂一区二区三区av女优| 亚洲a∨手机在线观看不卡| 人妻av中文在线有码| 强波多野结衣juy一507| 美国人性欧美XXXX| 久久riav华人91视频| 手机看片免费在线观看| 掩去也俺来也久久丁香| 色www在线免费观看| 日韩专区视频三级色爱综合网| 欧美一级黄片操嫩b喷白浆| 亚洲国产精品日韩在线| 张柏芝54张无删码艳照无码| 1024精品久久久| 欧美一级爽快片婬片高清免费| 国产一区二区二在线观看| 美女性一区二区三区| 日本亚洲欧美美色| 亚州色图视频一区二区三区| 99精品国产精品亚洲一级毛片| 先锋影音+中文字幕| 久久精品国产亚洲av色欲| 欧美韩国日本国产一区二区| 国产中文免费视频电影| 国产自在现线观看| 中国老年人性爱视频在线播放| 欧美三级在线完整版免费| 亚欧免费无码?ⅴ在线观看| 国产av一区二区最新精品无删减| 伦理聚合会网站免费看| 色妺妺在线视频喷水| 久久三级欧美风格| 亚洲色哟哟视频| 三级久久精品国产电影| 精品久久久久久久人妻蜜臀?v | 九一九色国产| 91视频国产高清| 欧美一级爽快片婬片高清免费| 日韩成人免费一级毛片| 波多野结衣婷婷| 亚洲欧美日韩日产系列黄色片| 在线直播黄台app凤蝶| 国内精品久久久久影院桃色| 美女胸禁止18以下看视频硬看 | 亚洲日本系列在线看| 国产精品久久久久久久午夜| 91看片欧美久久| 国产一区二区三区免费公开| 国产在线观看你懂的网站| 五月月色开心婷婷久久合| 国产高清在线精品一区二区成人| 亚洲精品成a人在线| 极品无码av一区二区| 重生之超级肉禽系统的小说| 荷兰人妻少妇无码精品一区二区| 国产农村妇女毛片精品久| 日韩无码导航网页| 国产精品色情国产电影| 国产v亚洲v天堂综合图片| 国产深夜福利久久久精品| 亚洲成线青青电影| 欧美日韩一区二区三区在线播放| 婷婷五月综合导航| 白白发布在线视频免费| 国产乱色在线观看| 医生扒开腿用黄瓜把我弄高潮了| 國產V亞洲V歐美V專區| 可以在线观看的av网站| 国产小屁孩草大人| 三级精品免费自拍| 天天爽夜夜爱av| 四虎永久在线精品国产免费| 光棍影院免费久久黄网另类三区| 护士撩起裙子让我桶的动态图| 亚洲熟妇综合乱一区二区三区| 亚洲日本视频| 96热国产一区二区在线观看| 征服好友的保守人妻| 蜜桃臀无码AV在线观看| 国产亚州制服高清版| 久久人妻综合| 最新午夜伦理影院| 五月丁香婷婷在线观看| 英语课代表趴在桌子上做作业| 亚洲精品91中文字幕| 国产AV国片精品JK制服无码| 岛国毛片高清观看在线wy999 | 日韩少妇下海拍Av| 无码人妻h动漫中文字幕| 午夜成人免费无码a片| 国产精品xvideos精品久久香蕉国产线看观看亚洲 | 国产熟女精品系列| 色妞精品AV一区二区三区| 97免费在线公开观看视频| 中国国产av激情| 麻花豆传媒剧国产电影| 果冻传媒2021精品视频| 国产亚洲中文日韩欧美综合网| 国产三级精品三级在专区中文| 淫色阁在线视频免费看| 打扑克又叫疼免费软件下载| 日韩深夜福利在线观看| 夜夜嗨av一区二区三区 | 2021久久伊人精品中文字幕有| 三级在线观看免费精品| va亚洲Va欧美va国产综合| 亚洲第一精品欧美成人污| AV电影一区二区三区| 亚洲一级婬片A片AAA毛片软件| 日本高清线视频在线| 欧美尤物人妻在线视频| 校花高潮喷水视频| 久久综合一区二区| 精品女神av网站在线观看| 久久人妻嫩草无码AV专区动漫| 免费成人影视| 精品一区二区久久久久久| 中文字幕一区二区在线免费观看 | 亚洲大码熟女在线| 国产精品成人永久在线四虎| 国产成人欧美在线免费| 人人妻人人操免费| 国产草草影院免费观看 | 日韩激情无码精品免费| 精品久久亚洲一级α| 中字无码一人妻无码| 亚洲A v无码专区色爱天堂| 又大又粗又猛又黄的视频| 日日夜夜精品视频免费| 亚洲国产中文精品一区二区手机 | 一级特黄a免费大片| 久久九九精品久久久久久| 男性GAY无套国产 免费软件| 在野外爱爱好爽小说| 久久精品手機視頻| 亚洲AV无码乱码国产麻豆重| 日本美女喂奶极品一区二区三区| 你懂得在线视频| 女人本色在线观看免费高清完整版| 中文字幕丰满乱子伦无码专区| 野花香高清视频在线播放观看| 人妖系列在线精品视频| 看当前无码专区狠狠躁天天躁| 中字无码一人妻无码| 一级a爱片免播放器免费观看| 456成人精品影院| 激情图片乱伦视频DVD| 大胆gogo999亚洲肉体艺术| 少妇社区在线播放视频| 亚洲欧洲一区二区对白最新资讯 | 少妇系列激情短篇小说| 第一福利在线永久视频www| 奇米影视四色中文字幕| 欧美激情A在线视频播放| 国产在线成人91| A精品无码无卡在线观看| 亚洲欧美日韩国产中文字幕| 亚洲精品软件网站下载链接| 国产毛片高清无打码在线| 五月婷丁香久久| 国产在线精品一区一本| 九九福利国产精品日韩精品| 人妻丰满熟妇av无码区乱com | 国产黄色美女毛片| 少妇久久被弄到高潮| 亚洲av再在线观看| 一本久久免费视频| 欧美精品在线不卡一区| 人成网站免费高清网站| 国产杨幂福利AV在线播放| 国产真人一级a爱做片喷水无码| 亚洲极美女高清在线观看av| 大香区一二三四区2021| 免费看黄漫的漫画软件手机免费看| 国产97人人超碰CAO蜜芽PR| 中国美女一级特黄大片图片| 日本成片免费观看视频在线| 国产51麻豆二区精品av视频| 久久这里只有精品青草| 菠萝蜜在线免费视频| 人妻出轨不卡中文字幕97| 国产精品jk美女无遮挡一区| 在线免费亚洲天堂AV影院| 国产免费?级成人片在线观看| 亚国产资源网中文最新版| 91精品在线观看国产线免费| 亚洲日韩乱码中文无码蜜桃| 国产啪视频1000部免费不卡| 亚洲伦理一区二区三区字幕| 无限资源欧美国产2019| 久久狠狠亚洲精品| 欧美一级黄片操嫩b喷白浆| 在线免费观看视频| 高清亚洲日韩欧洲不卡在线| 又大又粗又猛又黄的视频| 快速了解国产愉拍| 亚洲国产精品第一页| 奇米影视亚洲春色麻豆AV| 国内精品乱码久久久久伊人aⅴ | 福利视频午夜一区| 日韩久久免费黄片| 亚洲国产精品一区二区久久国产精品在线观看 | 无收费网站看污在线观看| 蜜桃视频黄片| 美女黄网站18禁免费看| 国产精品刺激对白麻豆99| 特级a级特黄毛片裸体| 日韩无套乱97超碰在线播放| 又粗又硬又爽18级A片| 国产成人综合国产亚洲欧美| 久久精品手機視頻| 无节操摄影部在线观看| 日韓無碼一級| 久久国产精品色香蕉91| 911国内自产在线观看| 国产黑丝在线一区二区三区| 国产精品老女人视频免费观看| 中文日韩无码人妻| 天堂…中文在线最新版在线| 99在线精品亚洲| 特级一级全黄毛片免费下载| 高清国产Ⅴa日韩亚洲免费午夜电影| 国产中日韩欧美综合在线| 三级亚洲丝袜制服另类色图| 韩精品欧美综合区| 五月婷丁香久久| 巜少妇3做爰1伦理| 偷偷在线观看免费高清电视剧推荐| 亚洲国产V高清在线观看综合| 女人扒开下面无遮挡| 欧美午夜亚洲福利在线| 亚洲综合另类桃花av| 国产久精品无码 一区二区| 黄色三级网站美女| 长篇乱肉合集乱500| 在线观看一区日韩电影| 又黄又粗的视频在线免费观看| 中文字幕一精品亚洲无线一区| 春药av一区二区三区四区| 精品男人在天堂| 精品人伦一区二区三区av| 在线观看免费亚洲| 日本H纯肉无遮掩3D动漫在线观 | 深夜久久aaaaa级毛片免费看| 国产成人aaa免费视频| 国产一级A做片免费网站| 久久这里只有精品青草| 欧美乱人伦精品一区二区| 伊人久久狼人| 国产av精选无码| 在线欧美亚洲日本| 沈教授别c我1v1高H| 亚洲AⅤ片在线观看| 久久熟女一区二区三区| 免费黄色女生视频| 精品亚洲有码一区二区三区| 少妇免费亚洲无码| 两女互慰高潮视频在线观看| 欧美精品在线不卡一区| 国产精品亚韩精品a在线| 国产精品午夜大片| 亚洲精品日韩免费av| 91绿帽人妻国内| 精品亚洲有码一区二区三区| 亚洲精品成a人在线| 国产在线精品在线观看精品| 免费国产黄网站在线看| 国产成人夜色高潮在线观看| 久操免费在线视频| 国产精品亚洲无码日韩| 国产亚洲91亚洲国产免费| 免费观看欧美黄色一级片| 国产精品亚洲一区二区动漫| 午夜中国女人性在线| 日本a∨免费一区二区三区| 亚洲精品国产av网| 免费视频吃奶玩乳不遮挡| 九九视频国产免费一区二区三区| 国自产拍av在线天天不卡| 青青早视频一二三区在线播放| 另类国产ts人妖高潮视频| 人妻天天爽夜夜精品视频| 蜜臀av一区二区| 91精品福利色网| 福利一区二区福利刺激微拍| 日韩在线综合| 国产欧美日韩精品一二三区 | 欧美高清强视频| 国产成人片无码免费视频导航| 五月月色开心婷婷久久合| 欧美精品精彩动漫无套内射| 国产在线成人91| 亚洲欧洲日产国产AV无码| 久久精品一区二区av| 蜜桃视频黄片| 国产亚洲精品久久久久久久久久久动漫| 日韩av中文字幕在线免费| 韩国一级片久久久| 中文字幕国产高清无码乱码| 超碰人人精品国产j久久| 国产TS紫迹丝袜高跟鞋在线| 不卡免费国产高清视频| 无码秒播成人影视网站大全| 国产成人夜色高潮福利影视91| 西西gogo午夜高清大胆| 亚洲av成人综合网在线观看| 国产精品久久久久久久午夜| yy6080一级毛片高清| 国产草草影院免费观看 | 国产一级片国产一级毛片| 老司机精品在线播放| 国语嫖妓对白在线视频| 伊人自拍乱拍激情欧美三级 | 无码的免费的毛片喷水视频| 一级a爱片免播放器免费观看| 少妇极品熟妇人妻无码| 9丨精品国产高清自在线看| 亚洲AV无码黑人| 人妻系列影片无码专区| 日产中文字幕在线观看| 帅小伙自慰打飞video| 一区二区三区 国产 精品| 纯肉视频免费观看| 成年无码AⅤ片在线观看国产| 日韓歐美精品綜合久久| 国产亚洲欧美第二区| 一区二区三区四区五区亚洲| 在线国语自产一区第二页| 夫妻性生活几天一次属正常?| 高清无专码区2021曰| 精品国产污污免费网站人口| 欧美妇性另类| 亚洲男同视频网站| 无码人妻h动漫中文字幕| 免费国产成人福网站| 亚洲免费观看视频一区二区| 最近免费中文字幕中文高清6| 亚洲日韩av无码久久精品| 久青草国产手机视频免费观看| 麻花豆传媒剧国产小视频| 2019天天干夜夜操| 亚洲欧美一区二区成人片片片| 亚洲欧洲一区免费| 欧美特大黄一级AA片片免费 爽爽| 国产精品二区综合久久久久久| 一区二区三区av高清免费 | 日本一区二区三区顶级黄色片| 伊人久370日韩欧美亚洲精品| 日日澡夜夜澡人人高潮| 国产亚洲人成a在线网站| 欧美午夜亚洲福利在线| 欧美区2021一二三区在线| 无遮挡很爽很黄很污| 日日天干夜夜人人添| 久久国产欧美日韩精品人| 少妇视频一区二区视频| 99在线精品一区二区三区| 日本三级年轻的寡妇| 日本精品久久久久中文字幕青草 | 粉嫩小泬无套白浆流出| 国产高清露脸孕妇系列| 国产久精品无码 一区二区| 我和子发生了性关系视频| 国产黄色毛片视频| 精品日韩av在线电影| 99精品视频在线观看| 五月婷丁香久久| 午夜精品久久久久久毛片色欲| 青青草一区二区免费精品| 同性男一级毛片免费看| 国产精品秘入口麻豆| 久久这里只有精品青草| xx国产在线观看| 亚洲视频精品久久| 一道本无码dvd不卡在线视频观看 国语嫖妓对白在线视频 | 日韩V欧美V中文在线| 重生之超级肉禽系统的小说| 看曰本女人大战黑人视频| 国产自制一区在线观看| 無婬黄在线观看网站| H视频在线观看无码免费| 久久久国产综合九九不卡| 永久地址网址亚洲国产| 中文字幕丰满乱子伦无码专区| 一区二区在线成人av| 青青青国产依人在线视频97| 精品日韩电影无码不卡| 人人操人人操天天艹| 在线直播黄台app凤蝶| 欧美午夜精品福利一区| 亚州αⅴ无码中文字幕| 骚女人干起来舒服视频在线| 日日摸夜夜添夜夜添中文字幕 | 成人免费午夜视频在线| 无人高清视频免费观看在线| 大尺度情欲电影推荐| 亚洲乱码一区二区欧美在线观看| 亚洲 综合 欧美在线| 欧美日本特级婬片视频| 亚洲中文精品字幕狼友电影| 亚洲国产一区二区a毛片妖精| 国产乱辈通奷免费视频| 日本H纯肉无遮掩3D动漫在线观 | 国产成人综合午夜福利| 日日摸夜夜添夜夜添中文字幕| 亚洲综合专区| 日韩综合成人在线| 久久精品免费一区二区三区综合| 91香蕉直播欧美一区三区| 国产HDVA成人资源| 亞洲熟婦少婦任你躁在線觀看無碼| 肥臀大屁股熟女免费视频| 伊人久久狼人| 国产免费?级成人片在线观看| 国产在线精品在线观看精品| 台湾中文娱乐综合久久久| 大胸少妇午夜三级| 91精品福利色网| 国产精品久久久久久久午夜| 妓女av流畅不卡顿在线观看| 影音先锋色资源一区| 香蕉视频黄APP污| 成人MV射精无打码视频| 一区二区在线成人av| 亚洲伊人激情| 亚洲日韩av无码久久精品| 一级毛片一区二区| 污污污黄色日韩精品| 免费羞羞视频网站| 中文字幕日韩欧美国产三级在线观看专区 | 一级乱子视频一区二区| 国产一级二级三级三级片| 美女黄色网址| 原神女角色去掉小内皮肤| 美女视频黄网站免费观看| 亚洲国产一区 二区 三区 | 香蕉视频你懂的| 可以在线观看的av网站| 99久久精品免费国产午夜九九| 无人高清视频免费观看在线| 无节操摄影部在线观看| 亚洲成av片一区二区三区| 日韩中文字幕四季毛片| 欧美人与动牲交a精品| 青青早视频一二三区在线播放| 欧美黄色精品国产| yw尤物国产193在线| 国产色婷婷精品综合在线小说| 9uu有你有我足矣官方| 国产成综合国产一级毛片免| 青青青草国产| 肉丝高跟白领国产在线观看| 欧美在线观看乱妇视频| 99热6这里只有精品6| 惠民福利欧美性欧美巨大黑白大战| 一二三四视频在线社区3| 国产成人无码噜噜噜| 国产v亚洲v天堂综合图片| 在线A毛片免费视频观| 亚洲91丝袜美腿丝袜在线观看| 91日韩美女在线精品播放| 色婷婷aⅴ日韩一区二区三区| 黄色网站视频免费在线观看| 国产激情自拍亚洲激情网站 | 人妻丰满熟妇av无码区乱com| 日韩成人一级av片| 娇妻穿开档内裤陪客户| 青青早视频一二三区在线播放 | 午夜影视免费在线观看国产片 | 国产精品午夜无码AⅤ无遮挡| 亚洲精品国产成年片在线观看| 国产欧美日韩国产第一区| 又黄又粗的视频在线免费观看 | 乱肉yin荡合集小说| 女的被弄到高潮喷水抽搐免费| 亚洲日本视频| 禁忌3与子亂倫一级A片| 最近的2019免费中文字幕| av777在线观看网站| 午夜成人理论在线观看| 日本中文视频不卡v二区| 青草福利视频| 熟女毛多熟妇人妻中出 | 亚洲国产Aⅴ日韩AV| 黄色一纹毛片网站| 精品国产精品久久一区免费式欧美| 丁香综合婷婷在线网站| 国产自在现线观看| 欧美激情性爱片在线观看不卡| 最近高清av中文在线字幕在线观看| 久草福利资源站| 五月月色开心婷婷久久合| 亚洲色婷婷综合久久二区互動交流| 国产精品午夜大片| 影音先锋免费AV资源在线资源| 在线观看黄色a免费网站 | 久久精品一区二区三区黄牛| 日本少妇一区二区三区| 夜先锋影视资源网| 久久免费黄片视频| 高清无码人妻| 日本精品久久久久中文字幕青草 | 性爱暖暖在线播放欧美日韩| 国产福利一片福利在线观看链接| free性丰满hd性欧美| 免费中出视频| 国产亚洲人成a在线网站| 性猛交XXXX免费看中国成人| 第九色区av天堂| 青青青国产在线观看国产大片| 国产欧美日韩精品一二三区| 国产精华Aⅴ午夜在线观看| 中文综合欧美自拍| 欧洲综合自拍亚洲综合图区| 亚洲第一福利区| 一本精品99久久精品77| 国产精品亚洲日韩在线一区| 九九国产精品免费视频| 亚州成av片一区二区久| 国产免费av吧在线观看在线| 色綜合歐美在線視頻區| 无码中字毛片日韩a| 巜入室强伦女教师在线播放| 国产精品亚洲日韩在线一区| 东莞性视频88xxx| 亚洲一级婬片A片AAA毛片软件| 操女人久久久| 自拍欧美国产色图| 亚洲va动漫精品一区| 黄片一级免费视频观看大全| 大尺度无遮挡激烈床震网站| 在线免费观看视频| 国产成人国拍亚洲精品福利| 日韩深夜福利在线观看| 被男友一天干了9次| 午夜在线观看短视频| 精品日韩免费观看在线视频| 欧美黄色精品国产| 夜色www国产精品| 视频区中文字幕日韩专区| 国产成人aa免费视频| 现代精品中文字幕在线| 免费视频在线观看极品 | 黄色麻豆APP下载| 亚洲美日韩Av中文字幕无码久久成人| 国产大片在线看| 国产精品一区二区日韩9青春草国产成人精品久久 | 日本亚洲欧美美色| 人妖系列在线精品视频| 无码三级片在线观看| 国产麻豆福利α v在线播放| vr国产成人免费高清视频| 囯产免费看黄色视频| 精品无人乱码一区二区三区三级| 亚洲无码一区二区三区在线观看| 久久精品免费大片国产大片 | 亚洲日韩精品在线视频| 久久综合无码人妻系列| 日韩另类黄色天堂| 亚洲激情久久第一页| 亚洲免费观看视频一区二区| 50岁老女人毛片一级亚洲| 国产大胸美女啪啪的样子| 特级a级特黄毛片裸体| 一级毛片免费视频网站| 久久无码高潮喷水办公室| 中文字幕日韩免费视频看网站大全| 日本道高清一区二区三区日本| 在线亚洲欧美日韩每日更新| 国产精品性爱亚洲欧美黄片| 我和子发生了性关系视频| 美女视频黄网站免费观看| 欧美日韩一卡2卡3卡4卡国色天香| 国产高清在线播放免费观看 | 亚洲女同性恋激情网站| 欧美寡妇性猛交xxx无码| 国产午夜福利片新视觉| 日韩精品性生活免费视频| 亚洲国产成人精品大片大片 | 人妻aⅴ中文精品无码| 亚洲毛片无码一区二区| 欧美精品精彩动漫无套内射| 又粗又硬的男女免费视频| 亚欧免费无码?ⅴ在线观看| 亚洲妓女一区二区| 大胸美女被啪啪高潮免费观看 | 丝袜精品影视| 国产av一区二区三区不卡| 沈教授别c我1v1高H| 夜色aV无码一区二区人妻| 欧美日韩在线亚洲国产人国产高清在线精品一区二区三区 | 人妻aⅴ中文精品无码| 日韩怡红院精品久久久久| 在线直播黄台app凤蝶| 国产AV片一区二区三区| 黄色片在线观看国产| 更新每日日日夜夜| 又大又粗又猛又黄的视频| 日日摸夜夜添精品视频| 日韩乱码久久久久久| 被男友一天干了9次| 91精品国产自产在线老师啪| 国产一级成人片在线观看| 两女互慰高潮视频在线观看| 久久精品国产老熟| 日本黄 r色 成 人网站免费国产| 骚女人干起来舒服视频在线| 一本精品99久久精品77| 国产精品黄片免费视频| 色视色视影院色视影厍色视网| 无码a级毛片免费视频内谢5j| 在夫面前人妻被欺完整版| 亚洲成av片一区二区三区| 日日摸夜夜添夜夜添中文字幕| 美女黄网站18禁免费看| 大胆gogo999亚洲肉体艺术| 青青草一区二区免费精品| 亚洲欧美黄色影院| 日本韩国亚洲精品| 亚洲av无码一区二区三区人妖五月| 国产亚洲曝欧美不卡精品98| 首之国产护士在线先锋| 醉酒自拍一二三区 | 国产在线视频不卡一区二区| one致敬韩寒黄软官网| 无码不卡人妻高清| av成人午夜无码一区二区| 日产乱码卡一卡2卡网址| 国产骚熟视频一区| 国产精品jk美女无遮挡一区| 手机免费看片| 国产孕妇孕交一级毛片| 亚洲国产成人精品大片大片 | 秋霞影院午夜福利| 午夜久久久久深夜福利| 全裸一级毛片在线播放视频| 亚洲愉拍自拍欧美精品APP| 亚洲最大综合日韩精品| 一本久久免费视频| 国产爽死你个荡货| 美国毛片舔鸡吧视频尤物视频| 在线观看成人精品| 全裸一级毛片在线播放视频| 最新果冻传媒在线观看免费版| 国产特级全黄一级毛片| 强行糟蹋人妻hd中文字幕| 国产在线精品一区二区三区在线| 国产成人综合午夜福利| 国产成人综合欧美视频在线观看| AV成人不卡一区二区三区| 中文字幕无码中文字幕有码? | 老司机无码精品永久福利在线| 亚洲色图欧美色图国产中文字幕| 免费国产一级内射老妇www| 国产午夜精品一区二区电影| 国产三级一区十级真人片| 字幕无码一区在线| 久久国产欧美日韩精品人| 美女把尿口扒开让男人桶爽| 在线一区日韩精品人妻| 久久久婷婷亚洲精品| 泄欲网站免费观看| 日本亚洲欧美美色| 中文字幕丰满乱子伦无码专区| 一本大道香蕉综合久在线播放视频| 国产人妻人伦精品9| 亚洲第一精品福利| 国产特黄大片aaaaa毛片| 亚洲三级欧美天天干在线视频观看| 日本成片免费观看视频在线| 美日中文在线播放一区二区| 亚洲精品成a人在线| 加勒比五月综合久久伊人| 国产丝袜无码一一区二区三区视频| 日本猛少妇色XXXXX猛叫小说| 国产不卡免费黄视频在线| 国产精品va一区二区三区| 欧美第一播放网站| 成人片在线观看永久地址| 成人性午夜免费视频网站| 人妻精品一区二区三区视频免精| 国产免费网站看v片在线| 日韩免费精品无码一二三区 | 久久久久久人妻毛片a片| 亚洲国产精品福利在线| 国产成人无码视频观看| 久久久er热这里只有精品2| 欧美国产综合欧美视频&| 日本欧美中文字幕精品一区| 国产成人欧美在线免费| 久操免费在线视频| 欧美激情一区二区成人| 日韩中文字幕无码专区| 網友分享91精品国产综合久久福利心得| 大香区一二三四区2021| 亚洲A∨综合色区无码一二三区| 色欲一区二区三区免费无码| 另类专区国产在线视频| 亚洲一卡二卡3卡四卡2022无码在线观看| 国产美女主播在线观看| 国产成人精品网站在线观| 免费看黄漫的漫画软件手机免费看| 少妇免费亚洲无码| 夜鲁视频在线观看| 成人欧美一区二区三区白人| 国产激情久久影院| 国产精品一区二区日韩9青春草国产成人精品久久 | 欧美亚洲日韩少妇| 被公侵犯的岬奈奈美人妻| 国产免费观看视频一区三区五区| 99精品国产综合久久精品自在| 亚洲AV无码国产精品播放在线| 污视频三级片在线观看| 久久亚洲小电影一区二区| 果冻传媒精东mv视频在线观看| 午夜成人APP免费观看| 99r少妇极品熟妇人妻无码| 色噜噜亚洲va无码专区一区| 了解最新五月花亚洲| 亚洲无码字幕手机在线| 欧美日韩国产一区二区三区精品 | 亚洲18禁Aⅴ无码爆乳自慰网站| 成年男女免费视频网站慢动作| 在线欧美亚洲一区二区三区| 九一九色国产| 黄色软件怎样下载| 美国人性欧美XXXX| 果冻传媒国产今日推荐| 亚洲综合无码一区二区加勒比此| 欧美在线观看乱妇视频| 无码国产成人国产在线观看| 了解最新五月花亚洲| 少妇无码精品无码专线| 中文字幕无一码在线不卡| 夜夜躁日日躁狠狠久久av| 亚洲三级欧美天天干在线视频观看| 国产精品无码AV永久在线蜜 | 国产色欲?V一区二区三区| 在线天堂中文最新版www下载| 韩国一级片久久久| 第四房色播网| 蜜臀国产精品国产免费观看 | 亚洲黄色一区二区在线观看| 少妇无码av无码专业区| 国产精品亚洲?V三区| 午夜蜜臀av无码少妇影视| 欧美一级做a爱高清免费在线观看| 久久影院视频!网站| 99久久99久久精品国产| 免费播放大片免费观看视频| 国产剧情AV不卡在线观看| 国产综合区久久精品久久久| 国产成人性色生活片免费毛| 免费人成在线看| 国产在线观看码视频| 无码日韩免费视频一区二区二区| 亚洲熟妇综合乱一区二区三区| 中文字幕一精品亚洲无线一区| 我的姐姐在线免费观看| 五码人妻一区二区| 精品女神av网站在线观看| 大尺度无遮挡激烈床震网站| 特级一级全黄毛片免费下载| 亚洲伦理一区二区三区字幕| 日本不卡在线播放视频| 精品国产三级a在线麻豆| 色哟哟视频一区二区三区四区五区| 中国日韩久久网站| 91亚洲视频图片在线| 性爱暖暖在线播放欧美日韩| 国模冰冰在线视频| 国产久精品无码 一区二区| 欧美日韩亚洲三区| 男人天堂av东京热| 日本xxx黄区免费看| 3d成人无码射精一二区| 国产麻豆福利α v在线播放| 亚洲av成人综合网在线观看| 国产福利成人在线观看| n欧美国产国产综合视频| 国产黄片一级成人看| 免费啪视频在线观看| 欧美黑人X高潮猛交看| 黄页网址大全免费观看视频国产| 亚洲日韩 偷拍 综合| 国产www在线完整版播放| 熟妇熟女HDⅩXX视频无毒不卡 | 国产97人人超碰CAO蜜芽PR| 国产片av片永久免费观看| 久久精品国产久久综合看麻豆| 欧美日本在线一区二区| 91精品国产黑色紧身裤美女| 国产一区二区狠干视频在线观看| 国产精品日韩高清在线蜜芽| 亚洲乱码一区二区欧美在线观看| 成年肉动漫在线观看无码| 韩国激情喷水高潮视频在线观看| 97人妻无码成人精品一区二区 | 国产顶级疯狂5p乱在线播放| 中文字幕免费观看视频| 久久精品国产亚洲av色欲| 日韩性一区二区三区| 一本之道婷婷色五月天色婷婷激情 | 美女露出奶头秘无遮挡免费| 日韩不卡一级毛片免费| 激情丝袜美女视频二区| 人妻系列影片无码专区| 国产福利一片福利在线观看链接| 久久国产精品欧| 超刺激国语对白在线观看| 丁香综合婷婷在线网站| 伦理聚合会网站免费看| 惠民福利亚洲欧美日韩综合在线播放| 1024精品久久久|